The melting of the Greenland ice sheet could lead to a sea level rise of 18 cm in 2100!

December 15, 2020

A new study, headed by researchers from the Universities of Liège and Oslo, applying the latest climate models, of which the MAR predicts a 60% greater melting of the Greenland ice sheet than previously predicted. Data that will be included in the next IPCC report. This study is published in Nature Communications.

The Greenland ice sheet, the second largest after the Antarctic's, covers an area of 1.7 million square kilometres. Its total melting could lead to a significant rise in ocean levels, up to 7 metres. Although we are not there yet, the previous scenarios predicted by climate models have just been revised upwards, predicting a rise in sea levels of up to 18 cm by 2100 (compared to the 10 cm announced previously) just because of the increase in surface melting. Within the framework of the next IPCC report (AR6) which will appear in 2022, the University of Liège Laboratory of climatology has been led to apply, within the framework of the ISMIP6 project, the MAR climate model which it is developing to downscale the old and new IPCC scenarios. The results obtained showed that for the same evolution of greenhouse gas concentrations till 2100, these new scenarios predict a 60% greater surface melting of the Greenland ice cap than previously estimated for the previous IPCC report (AR5, 2013).

The MAR model was the first to demonstrate that the Greenland ice sheet would melt further with a warming of the Arctic in summer. While our MAR model suggested that in 2100 the surface melting of the Greenland ice sheet would contribute to a rise in the oceans of around ten centimetres in the worst-case scenario (i.e. if we do not change our habits)," explains Stefan Hofer, post-doc researcher at the University of Oslo, "our new projections now suggest a rise of 18 cm". As the new IPCC scenarios are based on models whose physics have been improved - in particular by incorporating a better representation of cloudiness - and whose spatial resolution has been increased, these new projections should in theory be more robust and reliable.

The team of the Laboratory of Climatology was the first to downscale these scenarios on the Greenland ice cap. "It would now be interesting, says Xavier Fettweis, researcher and director of the Laboratory, to analyse how these future projections are sensitive to the MAR model that we are developing by downscalling these scenarios with other models than MAR as we have done on the present climate (GrSMBMIP)". This study will be carried out within the framework of the European project PROTECT (H2020). The objective of this project is to assess and project changes in the terrestrial cryosphere, with fully quantified uncertainties, in order to produce robust global, regional and local projections of sea level rise over a range of time scales. https://protect-slreu/
The data collected as part of the Katabata project, launched last September by Xavier Fettweis and his colleague Damien Ernst, will also help to refine the models, particularly the wind model-ling in the MAR climate model. "Knowing that the wind influences the melting of the ice sheet, it is important to have the most reliable models possible, concludes Xavier Fettweis."

Scientific reference

Stefan Hofer et al.: Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6, Nature Communications, 15 December 2020.

Fettweis et al.: GrSMBMIP: intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet, The Cryosphere, 14, 3935-3958,, 2020.

University of Liege

Related Climate Models Articles from Brightsurf:

Polar ice, atmospheric water vapor biggest drivers of variation among climate models
A Florida State University researcher is part of a team that has found varying projections on global warming trends put forth by climate change scientists can be explained by differing models' predictions regarding ice loss and atmospheric water vapor.

Revising climate models with new aerosol field data
Advanced field measurements of how quickly aerosol particles are pulled out of the air can help improve climate predictions - and air quality forecasts.

Simpler models may be better for determining some climate risk
Typically, computer models of climate become more and more complex as researchers strive to capture more details of our Earth's system, but according to a team of Penn State researchers, to assess risks, less complex models, with their ability to better sample uncertainties, may be a better choice.

Atmospheric scientists study fires to resolve ice question in climate models
Black carbon from fires is an important short-term climate driver because it can affect the formation and composition of clouds.

New soil models may ease atmospheric CO2, climate change
To remove carbon dioxide from the Earth's atmosphere in an effort to slow climate change, scientists must get their hands dirty and peek underground.

Patterns in permafrost soils could help climate change models
A team of scientists spent the past four summers measuring permafrost soils across a 5,000 square-mile swath of Alaska's North Slope.

Latest climate models show more intense droughts to come
An analysis of new climate model projections by Australian researchers from the ARC Centre of Excellence for Climate Extremes shows southwestern Australia and parts of southern Australia will see longer and more intense droughts due to a lack of rainfall caused by climate change.

Some of the latest climate models provide unrealistically high projections of future warming
A new study from University of Michigan climate researchers concludes that some of the latest-generation climate models may be overly sensitive to carbon dioxide increases and therefore project future warming that is unrealistically high.

A Europe covered in grasslands or forests: innovation and research on climate models
An experiment to better understand how atmospheric variables respond to land use changes.

How tiny water droplets form can have a big impact on climate models
Droplets and bubbles are formed nearly everywhere, from boiling our morning coffee, to complex industrial processes and even volcanic eruptions.

Read More: Climate Models News and Climate Models Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to