The mask matters: How masks affect airflow, protection effectiveness

December 15, 2020

WASHINGTON, December 15, 2020 -- Even though it has been widely known that wearing a face mask will help mitigate the community spread of COVID-19, less is known regarding the specific effectiveness of masks in reducing the viral load in the respiratory tracts of those wearing them.

In Physics of Fluids, by AIP Publishing, researchers from the University of Massachusetts Lowell and California Baptist University examined the effect of wearing a three-layer surgical mask on inspiratory airflows and the mask's effects on the inhalation and deposition of ambient particles in the upper respiratory airways.

"It is natural to think that wearing a mask, no matter new or old, should always be better than nothing. Our results show that this belief is only true for particles larger than 5 micrometers, but not for fine particles smaller than 2.5 micrometers," said author Jinxiang Xi.

The researchers found that wearing a mask with low (less than 30%) filtration efficiency can be worse than without.

They developed a computational face mask model using a physiologically realistic model of a person wearing a surgical mask with pleats and then using numerical methods to track the particles through the mask. They examined the behavior and fates of aerosols passing through the mask, onto the face, into the airway, and, eventually, where they deposit in the nose, pharynx, or deep lung.

The model showed a mask changes the airflow around the face, so that instead of air entering the mouth and nose through specific paths, air enters the mouth and nose through the entire mask surface but at lower speeds.

The lower speed near the face favors the inhalation of aerosols into the nose, so even though masks filter out certain numbers of particles, more particles escaping mask filtration can enter the respiratory tract.

They found the filtration efficiency of the three-layer surgical mask can vary from 65%, if new, to 25%, when used, so wearing a 65% mask properly will provide good protection, but wearing a 25% filtration mask can be worse than not wearing one at all.

"We hope public health authorities strengthen the current preventative measures to curb COVID-19 transmission, like choosing a more effective mask, wearing it properly for the highest protection, and avoid using an excessively used or expired surgical mask," said Xi.

The researchers found the pleats of a surgical face mask significantly affect airflow patterns, suggesting that mask shape should also be considered as an important factor when estimating mask protection efficiency and designing new masks. Xi said they will further study the effects of mask shapes on human airway protection efficiency.
-end-


American Institute of Physics

Related Particles Articles from Brightsurf:

Comparing face coverings in controlling expired particles
Laboratory tests of surgical and N95 masks by researchers at UC Davis show that they do cut down the amount of aerosolized particles emitted during breathing, talking and coughing.

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

How small particles could reshape Bennu and other asteroids
NASA's OSIRIS-REx spacecraft observed tiny bits of material jumping off the surface of the asteroid Bennu.

Probing the properties of magnetic quasi-particles
Researchers have for the first time measured a fundamental property of magnets called magnon polarisation -- and in the process, are making progress towards building low-energy devices.

TU Darmstadt: Pause button for light particles
Researchers at TU Darmstadt halt individual photons and can release them at the push of a button.

Chamber measurement standards established for fine particles
What effects do global warming and the formation of fine particles have on each other?

Distortion isn't a drag on fluid-straddling particles
New research published by EPJ E shows that the drag force experienced by fluid-straddling particles is less affected by interface distortion than previously believed.

Tiny 'bridges' help particles stick together
Understanding how particles bind together has implications for everything from the likelihood a riverbank will erode to the mechanism by which a drug works in the body.

Micromotors push around single cells and particles
A new type of micromotor -- powered by ultrasound and steered by magnets -- can move around individual cells and microscopic particles in crowded environments without damaging them.

Tiny particles lead to brighter clouds in the tropics
When clouds loft tropical air masses higher in the atmosphere, that air can carry up gases that form into tiny particles, starting a process that may end up brightening lower-level clouds, according to a CIRES-led study published today in Nature.

Read More: Particles News and Particles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.