IFDC innovative technology increases farmers' agricultural productivity, maintains resource base

December 16, 2002

IFDC--an International Center for Soil Fertility and Agricultural Development--has developed an innovative approach to agricultural development called Integrated Soil Fertility Management (ISFM), involving not just farmers, researchers, and extension workers but also bankers and traders, including inputs dealers and fertilizer enterprises. The holistic approach, based on the agribusiness system at the regional level, combines participatory methods to develop and extend ISFM technologies and support institutional changes that enable their adoption and facilitate effective linkages between farmers and the "market."

The primary donors for this work are the U. S. Agency for International Development (USAID) and the International Fertilizer Industry Association (IFA). Another project sponsored by the International Fund for Agricultural Development (IFAD) enhances the ISFM work.

"ISFM-based intensification technologies are based on the combined use of soil amendments and chemical fertilizers," says Dr. Arno Maatman, Leader, IFDC Input Accessibility Program. "Different amendments exist, and their requirement depends on soil characteristics. Organic resources are used for improved soil organic matter status. Limestone can be used to improve the pH level; soluble sources of phosphorus and phosphate rock are frequently used to increase the availability of phosphorus. The more difficult challenge is to improve the status of soil organic matter. More and better organic matter is needed. ISFM technologies that integrate the use of inorganic fertilizers with crop residue recycling, (green) manure, fodder crops, mixed cropping, crop rotation and agroforestry can improve the availability and quality of organic matter. The technologies lead in time to improved fertilizer use efficiency."

The new approach increases the accessibility of fertilizer for farmers, raises the agricultural productivity level, and maintains the natural resource base. Its potential has been demonstrated from the West African "Gold Coast" to the Sahel, for crops like maize, sorghum, millet and rice. ISFM technologies produce yields that are 2-3 times higher than average yields. Return on (invested) capital exceeds 100%, with a value: cost ratio well above 2, and returns to family labor are 2-6 times higher than the average salary rate prevalent in sub-Saharan Africa. The ISFM project is now operating in Benin, Burkina Faso, Ghana, Mali, Niger, Nigeria, and Togo with more than 2,000 farmers in more than 100 villages participating. Emphasis is placed on participatory approaches to develop ISFM technologies that are suitable to agroecological and socioeconomic conditions of farmers and that consider their needs, interests, and capacities. Thus, farmers select, experiment, and adapt in their own fields the methods developed with research and extension staff. This freedom of choice and action allows for innovation.

One of the farmers who has benefited from this technology is Edah Kehinnou, a woman farmer from the small village of Ahohoue, Benin. Kehinnou grows crops of maize, cowpeas, and groundnuts on her three fields. The ISFM package that she uses includes phosphate rock, legumes (cowpeas or groundnut) and other fertilizers. On her farm of less than 1 ha, she applied 300 kg of phosphate rock and harvested 4,175 kilograms per hectare of maize. During the second season, she harvested 120 kilograms of cowpeas on two-tenths hectare of land. She prefers to grow cowpeas rather than mucuna because the cowpeas not only may add nitrogen to the soil but also provide needed revenue. This year the rains came later so she applied fertilizer later and in a smaller dosage. When the rains come later, these farmers prefer to reduce their risks and try to apply smaller dosages of fertilizer in sequences--a "wait and see approach." Kehinnou treated the cowpeas four times with crop protection products (CPPs) to avoid insects. When farmers like her do not have money to purchase CPPs, they manufacture their own using leaves of the neem tree, locally produced soap, and other natural remedies.

"IFDC collaborates with both international and national agricultural research institutes to develop new ideas on ISFM technologies for different agroecological zones," Maatman says. "Technological options that appear to be of interest for the ISFM village-level projects are considered for experimentation through a participatory screening process that involves IFDC, the partner institutions, and the target farmers. Farmer's experiments and alternative ideas are also considered. The process results in the design of mutual learning plots, i.e., experiments set up with the farmers to test and fine tune ISFM options."
-end-
IFDC--An International Center for Soil Fertility and Agricultural Development--is a public, international organization (PIO), which was founded in 1974 to assist in the quest for global food security. The nonprofit Center's mission is to increase agricultural productivity through the development and transfer of effective, environmentally sound plant nutrient technology and agricultural marketing expertise.

IFDC

Related Maize Articles from Brightsurf:

European and American maize: Same same, but different
German researchers decoded the European maize genome. In comparison to North American maize lines, they discovered variations that underlie phenotypic differences and may also contribute to the heterosis effect.

European maize highlights the hidden differences within a species
Maize is one of our major staple foods and is cultivated around the world, showcasing a broad range of genetic adaptations to different environmental conditions.

Site-directed mutagenesis in wheat via haploid induction by maize
Site-directed mutagenesis facilitates the experimental validation of gene function and can speed up plant breeding by producing new biodiversity or by reproducing previously known gene variants in other than their original genetic backgrounds.

Research reveals regulatory features of maize genome during early reproductive development
A team of researchers led by Andrea Eveland, Ph.D., assistant member, Donald Danforth Plant Science Center, has mapped out the non-coding, 'functional' genome in maize during an early developmental window critical to formation of pollen-bearing tassels and grain-bearing ears.

UNM researchers document the first use of maize in Mesoamerica
international team of researchers investigates the earliest humans in Central America and how they adapted over time to new and changing environments, and how those changes have affected human life histories and societies.

Climate-smart agricultural practices increase maize yield in Malawi
Climate change creates extreme weather patterns that are especially challenging for people in developing countries and can severely impact agricultural yield and food security.

Maize, not metal, key to native settlements' history in NY
New Cornell University research is producing a more accurate historical timeline for the occupation of Native American sites in upstate New York, based on radiocarbon dating of organic materials and statistical modeling.

New aflatoxin biocontrol product lowers contamination of groundnut and maize in Senegal
Recently a team of plant pathologists have developed an aflatoxin biocontrol product, Aflasafe SN01, for use in Senegal, which includes four atoxigenic isolates native to Senegal and distinct from active ingredients used in other biocontrol products in Africa and elsewhere.

A genetic map for maize
Researchers have decoded the genetic map for how maize from tropical environments can be adapted to the temperate US summer growing season.

'Lost crops' could have fed as many as maize
Grown together, newly examined 'lost crops' could have produced enough seed to feed as many indigenous people as traditionally grown maize, according to new research from Washington University in St.

Read More: Maize News and Maize Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.