Scientists discover enzyme crucial to the transportation of proteins within cells

December 16, 2004

VANCOUVER, B.C. - December 16, 2004: Scientists at the University of British Columbia have discovered an enzyme in mammals crucial to the transportation of proteins within cells. Published today in Neuron, this discovery opens new avenues of understanding of the mechanisms underlying neuronal function and new therapeutic approaches for neurodegenerative diseases such as Alzheimers and Huntington Disease.

The enzyme, HIP14, is a palmitoyl transferase that adds signaling molecules to proteins resulting in their transportation to specific cellular locations where they perform essential functions. This process known as palmitoylation is extremely important for the normal functioning of the nervous system where proteins are transported rapidly within nerve cells known as neurons.

Until now, scientists did not know how mammalian proteins become palmitoylated. During their study of Huntington Disease, Dr. Michael Hayden's team at the Centre for Molecular Medicine and Therapeutics had previously identified a protein called HIP14 and recognized that it might play a role in palmitoylation. To further understand this mechanism, the Hayden team formed a partnership with Dr. Alaa El-Husseini and his team at the Brain Research Centre who are experts in the field of protein palmitoylation. Through this unique collaboration between experts in complementary fields, they discovered that HIP14 is indeed a mammalian palmitoyl transferase.

The teams also discovered that in the absence of the HIP14 enzyme, proteins were not transported to locations in the cell where they are needed. This change in protein trafficking is thought to result in severe neuronal dysfunction and may be a mechanism underlying diseases such as Alzheimers and Huntington Disease.

This research was funded by the Michael Smith Foundation for Health Research, the Canadian Institute of Health Research and the High Q Foundation.
-end-
Journal Article: Neuron, Vol. 44, 977- 986, December 16, 2004

The Centre for Molecular Medicine and Therapeutics (CMMT) is a joint alliance between the BC Research Institute for Children's and Women's Health, the University of British Columbia, Children's and Women's Health Centre of British Columbia (C&W's), Merck Frosst Canada Inc. and the Government of British Columbia. The CMMT is dedicated to understanding the molecular function and structure of genes as the key to improved diagnosis, treatment and prevention of health problems in children and adults.

The Brain Research Centre is a unique partnership between Vancouver Coastal Health and the Faculty of Medicine at the University of British Columbia. The hospital has combined forces with broad, multi disciplinary research expertise at the University of British Columbia to advance our knowledge of the brain and to explore new discoveries and technologies which have the potential to reduce the suffering and cost associated with disease and injuries of the brain.

University of British Columbia

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.