Advances in breast imaging

December 16, 2006

SAN ANTONIO -- A diagnostic device that resembles a mammography unit can detect breast tumors as tiny as one-fifth of an inch in diameter, which may make it a valuable complementary imaging technique to mammography, say researchers at Mayo Clinic, who helped develop the technology along with industry collaborators Gamma Medica and GE Healthcare.

This new technique, Molecular Breast Imaging, uses a new dual-head gamma camera system and is sensitive enough to detect tumors less than 10 millimeters (about two-fifths of an inch) in diameter in 88 percent of cases where it is used. Early findings from an ongoing comparison of the device with mammography show that it can detect small cancers that were not found with mammography, say the investigators. Mayo Clinic physicist Michael O'Connor, Ph.D., will present these results Saturday, Dec. 16, at the 2006 meeting of the San Antonio Breast Cancer Symposium.

"Our ultimate goal is to detect small cancers that may be inconspicuous or invisible on a mammogram for high-risk women with dense breasts," says Dr. O'Connor.

The investigators also say their device will likely be only slightly more expensive to use than mammography, and will be much more comfortable for women because much less pressure is needed to image a breast.

"We hope that our studies will eventually show our device to be almost as sensitive as magnetic resonance imaging (MRI), which is probably the best diagnostic test available to date, but is not widely used because of its expense," says Stephen Phillips, M.D., a Mayo radiologist and a study co-author. An MRI scan costs as much as ten times more than a traditional mammogram and involves injection of a contrast agent.

Mammography uses low-dose X-rays (ionizing radiation) to create images of the anatomy of breast tissue. If the breasts are very dense, it can only accurately help in tumor diagnosis in 30 to 50 percent of cases, says Deborah Rhodes, M.D., another study co-author. Yet women who have dense breasts are four to six times more likely to develop breast cancer, and more functioning breast tissue is available in which disease can occur, she says.

Conventional gamma cameras cannot be easily adapted for breast imaging. Instead, the investigators used new, small semiconductor-based gamma cameras and incorporated them into a new breast imaging system. Images obtained with these gamma cameras are not affected by dense or fatty tissue. In the procedure, women are injected with a small amount of the radioactive drug sestamibi that preferentially travels to tumors, which absorb the substance. These women then are seated in front of the device, which looks like "a strange mammography unit," Dr. O'Connor says. Each breast is lightly compressed between the gamma cameras with just enough pressure to keep it from moving for 5 to 10 minutes while several images are taken. "It is much more comfortable for women, because a force of only 15 pounds is used, compared to the 45-pound force compression needed to take a mammogram," he says.

The image usually shows low, but some, absorption of the sestamibi throughout the breast. In areas of cancer, the amount of drug absorption is significantly increased by the cancer. Although some benign conditions such as fibroadenomas will occasionally absorb the drug, creating a false-positive result, the researchers believe that the error rate is less than the approximately 10 percent rate found with traditional mammography.

The research team used this innovative dual-head gamma camera system to scan 100 patients who had suspicious breast lesions that were small, with a diameter of 2 centimeters (four-fifths of an inch) or less. Eighty-two cancers were later identified at surgery in 54 patients. The gamma camera detected 76 of the cancers, giving it a 93 percent success rate in these cases. Some were missed, either because the breast was not properly positioned in the device or because they were too small to detect with this technology (2 to 4 millimeters or about one-tenth to fifteen-one hundreths of an inch), says Dr. O'Connor. Still, the gamma camera was 88 percent accurate in picking up cancers less than 10 millimeters.

The researchers will also discuss preliminary findings from an ongoing, blinded clinical trial comparing the gamma camera with mammography in 2,000 women who have come to Mayo Clinic for routine screening. In the first 250 patients, the gamma camera detected four cancers, and three of these were not visible on a mammogram.

"Although these initial results are very exciting, we clearly need to image more patients to confirm the promise of the device," says Dr. Rhodes. She says the team hopes to complete the ongoing trial in the next two years.
-end-
Elizabeth Zimmermann
507-284-2511 (evenings)

EMBARGOED: Hold for release until
Saturday, Dec. 16, 2006, 9:00 a.m. EST
2006 San Antonio Breast Cancer Symposium

Other Mayo researchers involved in these studies include Carrie Hruska and Dana Whaley, M.D. Their collaborators included Ira Blevis, Ph.D., from GE Healthcare, Haifa, Israel; and Douglas Wagenaar, Ph.D., from Gamma Medica - Ideas, Northridge, Calif.

For more information about Breast Diagnostic Clinics at Mayo's locations in Arizona, Florida and Minnesota, visit http://www.mayoclinic.org/breast-clinic. To read more about Mayo's women's cancer research, see http://cancercenter.mayo.edu/mayo/research/womens_cancer.

To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Mayo Clinic

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.