International research collaboration narrows focus on genetic cause of Kawasaki disease

December 16, 2007

Researchers from Japan's RIKEN SNP Research Center, collaborating with a team at the University of California, San Diego (UCSD), have discovered a new genetic variation that affects a child's risk of getting Kawasaki disease (KD), an illness characterized by acute inflammation of the arteries throughout the body. The genetic variation influences immune activation and the response to standard treatment, as well as the risk of developing coronary artery aneurysms - a swelling of the artery that can result in blood clots and heart attack - as a complication of KD.

Lead author, Yoshi Onouchi, M.D., Ph.D., SNP Research Center, RIKEN, Yokohama, Japan, used DNA from hundreds of U.S. children and their parents, collected through the Kawasaki Disease Research Center at Rady Children's Hospital San Diego (RCHSD), Department of Pediatrics, UCSD School of Medicine.

"This was a wonderful collaboration," said co-author, Jane Burns, M.D., professor and chief, Division of Allergy, Immunology, and Rheumatology, UCSD Department of Pediatrics. "Dr. Onouchi used our DNA to make this observation. Now we are building on that observation."

Kawasaki Disease, a pediatric illness characterized by fever and rash, is not a rare illness but it is most prevalent in Japan. In San Diego County, 20 to 30 children per 100,000 children less than five years of age are affected each year. More than 50 new patients are treated annually at RCHSD. The illness is four to five times more common than some more publicly recognized diseases of children such as tuberculosis or bacterial meningitis.

If untreated, KD can lead to lethal coronary artery aneurysms. KD tends to run in families, suggesting that there are genetic components to disease risk. It is also 10 to 20 times more common in Japanese and Japanese American children than in children of European descent.

Researchers identified a region on chromosome 19 linked with the disease. In particular, a series of variants across four genes in the region appeared more frequently in individuals with the disease than those in the healthy control group.

The team focused on one of these genes, ITPKC, which appeared to be the most likely candidate. The gene lies in a signaling pathway that affects the activation of T cells, one arm of the body's immune response system. ITPKC encodes an enzyme that is part of a signaling pathway with a critical role in T cell activation. The authors showed that one of the risk variants reduces the expression of ITPKC, and that lower levels of ITPKC lead to over-activation of T cells.

"This single gene jumped out as an obvious candidate because it is involved in immune activation, and KD is a disease of immune over-activation," said Burns. "This was great detective work to decipher the function of this variant."

Study authors suggest that the association of ITPKC with Kawasaki disease may have immediate clinical implications. Up to 20% of children who have KD are resistant to the standard treatment with intravenous immunoglobulin. This therapy is more likely to fail in individuals with the ITPKC risk variant. If these individuals could be identified with a genetic test, they could be offered alternative, more intensive therapies.

Further studies will identify additional sites of genetic variation and may capture enough of the genetic influence that a diagnostic test can be devised to identify children at increased risk. These children with KD would be candidates for more aggressive therapy.

"A significant number of KD patients suffer irreversible coronary artery damage, which can lead to heart attack, heart failure, or require transplant," noted Burns. "Our goal at RCHSD is to create a genetic test for KD patients that will indicate whether the patient is at increased risk. If that's the case, we can use additional treatments and potentially reduce future complications."

In addition, the finding may have implications for understanding the genetic thermostat that regulates the intensity of a person's immune response to inflammation. Investigators are now looking at what impact this genetic variation might have on initiating other inflammatory conditions, such as atherosclerosis and myocarditis, an inflammation of the heart muscle often caused by a viral infection.
-end-
The Kawasaki Disease Research Program is a joint collaboration between the Departments of Pediatrics and Sociology at University of California, San Diego (UCSD), the Climate Center at Scripps Institution of Oceanography, and Rady Children's Hospital San Diego. The Program was created to help foster excellence in care for patients with Kawasaki Disease (KD) and to support clinical, laboratory, and epidemiologic investigation into the etiology, pathophysiology, and natural history of the disease. The program brings together investigators from more than 15 countries with diverse research interests and expertise to work together to further our understanding of this enigmatic disease.

Kawasaki Disease is often accompanied by the following symptoms: high fever and irritability; rash; swelling and redness of the hands and feet; bloodshot eyes; red mouth, lips, and throat; and swollen lymph nodes in the neck. It affects children almost exclusively; most patients are under 5 years of age. For reasons still unknown, males acquire the illness almost twice as often as females.

University of California - San Diego

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.