A European first as ALICE achieves energy recovery at 11 million volts

December 16, 2008

UK scientists have successfully demonstrated energy recovery on the ALICE advanced particle accelerator design, potentially paving the way for new accelerators using a fraction of the energy required under conventional methods.

At 2am on 13 December, ALICE's superconducting linear accelerator accelerated electrons to 99.9% of the speed of light, creating a beam with a total energy of 11 million electron volts. This was the first time the ALICE beam had been successfully transported around the entire circuit.

ALICE is operated by the Science and Technology Facilities Council (STFC) at its Daresbury Laboratory in Cheshire. It is a world-class R&D prototype designed to open the way for advances in a broad range of exciting accelerator science applications.

ALICE is the first accelerator in Europe to use the energy recovery process which captures and re-uses the initial beam energy after each circuit. At the end of the circuit, rather than throwing out the used beam of high-energy electrons, its energy is extracted for continued use before being safely discarded at an extremely low energy.

Susan Smith, Head of the Accelerator Physics Group at STFC Daresbury Laboratory said: "Energy recovery means a massive saving of power or alternatively, for the same power usage, light sources and colliders of unprecedented power and intensity. The ALICE team have been working tremendously hard to demonstrate energy recovery and when we did this in the small hours of Saturday morning, it felt like Christmas had come early."

Dr Smith said the milestone was important but more work was required to fully validate the design.

"We have proven energy recovery, but not yet quantified it. Once fully commissioned ALICE will accelerate to 35 million volts, electrons will be sent round the accelerator at 99.99% of the speed of light and 99.9% of the power at the final accelerator stage will be recovered, making the power sources for the acceleration drastically smaller and cheaper and therefore economically viable," she said.

Professor Keith Mason, Chief Executive of STFC, said: "This is an impressive and significant step forward for ALICE. In itself, the concept of energy recovery is not new, but the application of this technique in combination with advanced accelerator technologies, such as super-conducting cavities, has exciting prospects for the future of next generation light sources and particle colliders."
-end-


Science and Technology Facilities Council

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.