Pitt researchers create nontoxic clean-up method for potentially toxic nano materials

December 16, 2008

PITTSBURGH--University of Pittsburgh researchers have developed the first natural, nontoxic method for biodegrading carbon nanotubes, a finding that could help diminish the environmental and health concerns that mar the otherwise bright prospects of the super-strong materials commonly used in products, from electronics to plastics.

A Pitt research team has found that carbon nanotubes deteriorate when exposed to the natural enzyme horseradish peroxidase (HRP), according to a report published recently in Nano Letters coauthored by Alexander Star, an assistant professor of chemistry in Pitt's School of Arts and Sciences, and Valerian Kagan, a professor and vice chair of the Department of Environmental and Occupational Health in Pitt's Graduate School of Public Health. These results open the door to further development of safe and natural methods--with HRP or other enzymes--of cleaning up carbon nanotube spills in the environment and the industrial or laboratory setting.

Carbon nanotubes are one-atom thick rolls of graphite 100,000 times smaller than a human hair yet stronger than steel and excellent conductors of electricity and heat. They reinforce plastics, ceramics, or concrete; conduct electricity in electronics or energy-conversion devices; and are sensitive chemical sensors, Star said. (Star created an early-detection device for asthma attacks wherein carbon nanotubes detect minute amounts of nitric oxide preceding an attack.)

"The many applications of nanotubes have resulted in greater production of them, but their toxicity remains controversial," Star said. "Accidental spills of nanotubes are inevitable during their production, and the massive use of nanotube-based materials could lead to increased environmental pollution. We have demonstrated a nontoxic approach to successfully degrade carbon nanotubes in environmentally relevant conditions."

The team's work focused on nanotubes in their raw form as a fine, graphite-like powder, Kagan explained. In this form, nanotubes have caused severe lung inflammation in lab tests. Although small, nanotubes contain thousands of atoms on their surface that could react with the human body in unknown ways, Kagan said. Both he and Star are associated with a three-year-old Pitt initiative to investigate nanotoxicology.

"Nanomaterials aren't completely understood. Industries use nanotubes because they're unique--they are strong, they can be used as semiconductors. But do these features present unknown health risks? The field of nanotoxicology is developing to find out," Kagan said. "Studies have shown that they can be dangerous. We wanted to develop a method for safely neutralizing these very small materials should they contaminate the natural or working environment."

To break down the nanotubes, the team exposed them to a solution of HRP and a low concentration of hydrogen peroxide at 4 degrees Celcius (39 degrees Fahrenheit) for 12 weeks. Once fully developed, this method could be administered as easily as chemical clean-ups in today's labs, Kagan and Star said.
-end-


University of Pittsburgh

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.