Researchers identify new anti-tumor gene

December 16, 2008

RICHMOND, Va. (Dec. 16, 2008) - Researchers from Virginia Commonwealth University have identified a new anti-tumor gene called SARI that can interact with and suppress a key protein that is overexpressed in 90 percent of human cancers. The discovery could one day lead to an effective gene therapy for cancer.

According to Paul B. Fisher, M.Ph., Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine, and lead investigator of the study, this novel gene highlights a previously unrecognized molecular pathway underlying the anti-tumor action of interferon, INF.

In the study, published online in the Dec. 8 issue of the Proceedings of the National Academy of Sciences, researchers report the discovery of a new gene named SARI, which was uncovered by a powerful technique pioneered in the Fisher laboratory known as subtraction hybridization. SARI, which is induced by a potent immune system modulator called interferon, was found to suppress growth and survival of tumor cells by interfering with the action of cancer cell molecules that drive cell division and promote survival.

The investigators delivered SARI to cancer cells using a virus and the infected cancer cells subsequently stopped dividing and died. Since 90 percent of all cancer types rely on a similar mechanism to proliferate and evade destruction, Fisher noted that SARI could be an effective anti-cancer treatment for many tumors.

"Additionally, IFNs are powerful immune modulating agents that contribute to the immune response to cancer and they are effective inhibitors of new blood vessel formation, the process of angiogenesis, which is obligatory for the growth of both primary and metastatic cancers," said Fisher, who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center.

Currently, IFNs are relevant in the clinical treatment of a number of solid tumors and hematological malignancies, such as melanoma, renal cell carcinoma, malignant glioma, lymphomas and leukemias, either as a monotherapy or as an adjuvant to chemotherapy of radiotherapy.

"We have uncovered a new way by which interferon can induce anti-tumor activity. The identification of SARI also provides a new potential reagent for the selective killing of tumor cells," said Fisher.

"The present study indicates that interferon can suppress cancer growth by inhibiting expression of a cancer-dependent transcription factor that controls genes that regulate cancer cell growth. The SARI gene may provide novel and selective gene therapy applications for cancer. It could also prove amenable for inhibiting proliferative disorders that depend on AP-1 activity," he said. AP-1 plays a key role in regulating proliferation and transformation of cancer cells.

The team is now developing improved approaches to more effectively target the delivery of SARI. Fisher said these studies will be crucial for exploiting the cancer-selective killing activity of this gene and enhancing its therapeutic applications.
-end-
This work was supported by grants from the National Institutes of Health, the Samuel Waxman Cancer Research Foundation and the National Foundation for Cancer Research.

Fisher worked with a team that included VCU School of Medicine researchers Zaozhong Su, Ph.D., associate professor in the VCU Department of Human and Molecular Genetics; Devanand Sarkar, Ph.D., assistant professor and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center, the VCU Institute of Molecular Medicine and the Department of Human and Molecular Genetics; Seok-Geun Lee, Ph.D., assistant professor at the VCU Massey Cancer Center and the Department of Human and Molecular Genetics; and Kristoffer Valerie, Ph.D., professor at the VCU Massey Cancer Center and Department of Radiation Oncology; and Pankaj Gupta, Ph.D., senior research scientist, Immunomedics Inc., in Belleville, N.J.; Luni Emdad, Ph.D., assistant professor, Mount Sinai School of Medicine in New York; Irina V. Lebdeva, Ph.D, senior scientist, Enzo Biochemicals Inc., Farmington New York.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

About the VCU Massey Cancer Center: The VCU Massey Cancer Center is one of 64 National Cancer Institute-designated institutions that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.

Virginia Commonwealth University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.