Reward-stress link points to new targets for treating addiction

December 16, 2008

Rewarding and stressful signals don't seem to have much in common. But researchers studying diseases ranging from drug addiction to anxiety disorders are finding that the brain's reward and stress signaling circuits are intertwined in complex ways.

Vanderbilt University Medical Center investigators have now discovered a functional link between reward and stress. They found that dopamine - the brain's chief reward signal - works through corticotrophin-releasing factor (CRF) - the brain's main stress signal - to increase the activity of a brain region involved in addiction relapse.

The findings, reported Dec. 17 in The Journal of Neuroscience, point to new potential targets for treating alcohol and drug abuse - particularly the problem of relapse.

It is widely accepted that stress is a key signal in prompting alcohol and drug abuse relapse.

"Even after long periods of abstinence, an individual is at risk for relapse, and stress is what's most frequently cited as initiating that relapse," said Danny Winder, Ph.D., associate professor of Molecular Physiology & Biophysics and an investigator in the Center for Molecular Neuroscience and the Vanderbilt Kennedy Center.

Studies in animal models had suggested that a brain region called the extended amygdala - an area that extends anatomically between reward and stress centers - and CRF within this region were involved in stress-induced reinstatement (relapse) behavior.

It was also known that alcohol and drugs of abuse increase dopamine levels, not just in the "classical" reward circuitry in the brain, but also in the extended amygdala. It was not clear, however, what dopamine did in this region.

Thomas Kash, Ph.D., a research instructor in Winder's laboratory, decided to explore dopamine's actions in the extended amygdala. Using an in vitro brain slice system, he discovered that dopamine increased excitatory glutamate signaling in this brain region. Surprisingly, he found that dopamine required CRF signaling to increase glutamate signaling.

The researchers next looked for this mechanism in animals. William Nobis, an M.D./Ph.D. student, injected mice with cocaine and studied signaling in brain slices. His studies confirmed that in vivo administration of cocaine engaged the dopamine-CRF signaling cascade that the team had discovered in vitro.

"We think that when an individual takes a drug of abuse or alcohol, it causes a rise in dopamine levels in the extended amygdala, and that likely engages this CRF signaling cascade in this region," Winder said. "That's now activating portions of this brain structure, which then communicate with the core addiction reward circuitry. We believe the dopamine-CRF signaling may be a key initial step in promoting reinstatement behavior."

The findings suggest a new target to consider for therapeutics that might address stress-induced reinstatement, Winder said.

"If we can hone in on the mechanisms of this dopamine-CRF interaction, if we can identify the key population of CRF cells, then we could start to think of approaches to silence those cells."

Such a therapy would be extremely valuable, Winder noted.

"Essentially all of the pharmacotherapies for addiction to date help people get through the withdrawal phase," he said. "There's really nothing available to reduce the likelihood of relapse."

The studies add to a growing number of research findings that point to the interwoven nature of the brain's reward and stress circuitry. Investigators need to be looking beyond dopamine and the classical reward circuitry - long considered the "common target" of drugs of abuse - to understand mechanisms underlying addiction-related behaviors, Winder said.

"The recruitment of CRF signaling may be another common feature of drugs of abuse."
-end-
Robert Matthews, Ph.D., research associate professor in the Department of Molecular Physiology & Biophysics, also contributed to the studies. The National Institutes of Health supported the research.

Vanderbilt University Medical Center

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.