How do we understand written language?

December 16, 2009

Milan, Italy, 16 December 2009 - How do we know that certain combinations of letters have certain meanings? Reading and spelling are complex processes, involving several different areas of the brain, but researchers from Johns Hopkins University in the USA have now identified a specific part of the brain - named the left fusiform gyrus - which is necessary for normal, rapid understanding of the meaning of written text as well as correct word spelling. Their findings are published in the February 2010 issue of Cortex (http://www.elsevier.com/locate/cortex), published by Elsevier.

Dr Kyrana Tsapkini, from the Department of Neurology at Johns Hopkins University School of Medicine, and Dr Brenda Rapp, from the Department of Cognitive Science at Johns Hopkins University, studied the reading comprehension and spelling abilities of a patient who had undergone surgical removal of part of his brain due to a tumor. The patient's reading and spelling abilities had been above average prior to the surgery. They tested the patient and a group of control participants using 17 experimental tasks, which evaluated their comprehension and production of written language, spoken language, as well as their processing of other visual categories such as faces and objects.

The results of the study revealed that the patient was able to understand the meaning of spoken language as rapidly as the other participants and was similarly able to process objects and faces in a normal way. However, he showed significant delays in understanding the meaning of written text and also had difficulty in producing accurate spellings when writing dictated text, suggesting that these abilities required the use of the brain area, which had been removed.

According to the authors, the findings provide clear evidence that there are particular structures within this part of the brain - the left mid-fusiform gyrus - that are "specialized and necessary for normal orthographic processing".
-end-
Notes to Editors:

The article is "The orthography-specific functions of the left fusiform gyrus: Evidence of modality and category specificity" by Kyrana Tsapkini and Brenda Rapp and appears in Cortex, Volume 46, Issue 2 (February 2010), published by Elsevier in Italy. Full text of the article featured above is available to members of the media upon request. Please contact the Elsevier press office, newsroom@elsevier.com. To schedule an interview, contact Dr. Kyrana Tsapkini, tsapkini@cogsci.jhu.edu.

About Cortex

Cortex is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi. The Editor in-chief of Cortex is Sergio Della Sala, Professor of Human Cognitive Neuroscience at the University of Edinburgh. Fax: 0131 6513230, e-mail: cortex@ed.ac.uk. Cortex is available online at http://www.sciencedirect.com/science/journal/00109452

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including the Lancet (www.thelancet.com) and Cell (www.cell.com), and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Reaxys (www.reaxys.com), MD Consult (www.mdconsult.com) and Nursing Consult (www.nursingconsult.com), which enhance the productivity of science and health professionals, and the SciVal suite (www.scival.com) and MEDai's Pinpoint Review (www.medai.com), which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier (www.elsevier.com) employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading publisher and information provider. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Elsevier

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.