Blocking the critical structure that lets cancer cells move -- their feet

December 16, 2010

DURHAM, N.C. -- Scientists now know that some cancer cells spread, or metastasize, throughout the body the old-fashioned way -- by using their feet. But researchers at Duke Cancer Institute have discovered a way to short-circuit their travels by preventing the development of these feet, called invadopodia. This discovery is even more important because preventing the development of these "feet" also eliminates the action of proteins present in the feet that burn through intact tissue and let cancer cells enter new cells.

The results could yield a treatment to prevent the spread of cancer, which would be taken in combination with a treatment that kills the cancer cells, said Ann Marie Pendergast, Ph.D., senior author and James B. Duke Professor of Pharmacology and Cancer Biology at Duke. "A combination like this would be more effective than either treatment given alone."

"This is the first time anyone has identified the Abl family of protein kinases (comprising two proteins, Abl and Arg) as critical regulators of invadopodia structures," Pendergast said. "This has never been seen before."

The study was published in the Journal of Biological Chemistry on Dec. 17.

The team found that the Abl and Arg kinases are required not only for the formation and function of the invadopodia, but also that these kinases are found within these structures. "Thus, if we can find a way to block the kinases, we'll find a way to keep the feet from forming correctly and will keep the cells from moving," Pendergast said.

The researchers also made a new connection between these Abl and Arg kinases and the regulation of a Matrix Metalloproteinase (MMP) that is very important in cancer invasion and metastasis. "When you lose the functions of the Abl and Arg kinases, you also lose the function of the MMP proteins, which 'chew' through the matrix surrounding cells and tissues," Pendergast said. The MMP proteins can create openings for cancerous cells to escape through on their way to becoming a metastasis, she said.

The studies began because the researchers knew that Abl kinases can directly connect with actin, a filament-like protein that cells use to move. These kinases also seem to target a number of actin-regulatory proteins that are found in invadopodia, "so we thought it might be interesting to see what would happen if we blocked the activity of these kinases," Pendergast said. "We expected a mild effect, but were surprised by the striking effect we saw."

Using fluorescent proteins for imaging purposes, the team observed that when the kinase activity was blocked, the cancer cell "feet" then disappeared as well.

Pendergast said the pharmacologic agents used to block the Abl kinases are FDA-approved for use in leukemia (imatinib), which means it may not be hard to win their approval for new applications.
-end-
Other authors include Pameeka Smith-Pearson and Emileigh K. Greuber of the Duke Department of Pharmacology and Cancer Biology and Gouri Yogalingam, formerly of Duke, who is now at the Stanford University School of Medicine.

The work is supported by the American Cancer Society New England Division-Spin Odyssey Postdoctoral Fellowship, the Molecular Cancer Biology Postdoctoral Fellowship Training Grant, a PhRMA Predoctoral Fellowship, and the National Institutes of Health.

Duke University Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.