Iowa State, Ames Lab physicist developing, improving designer optical materials

December 16, 2010

AMES, Iowa - Advancements in fabrication technologies may lead to superlenses and other designer optical materials, according to an Iowa State University and Ames Laboratory physicist.

In an article titled "Improving Metamaterials" published in the Perspectives section of the Dec. 17 issue of the journal Science, Costas Soukoulis and Martin Wegener write about the man-made materials designed to deliver certain properties not found in nature.

Soukoulis is an Iowa State University Distinguished Professor and Frances M. Craig Professor of Physics and Astronomy and a senior scientist for the U.S. Department of Energy's Ames Laboratory who collaborates with the University of Crete in Greece and with the Institute of Electronic Structure and Laser at the Foundation for Research and Technology - Hellas, Greece. Wegener is the group leader for the Institute of Applied Physics at the Karlsruhe Institute of Technology in Karlsruhe, Germany.

Metamaterials, sometimes called left-handed materials, are exotic, artificially created materials that provide optical properties not found in natural materials. Metamaterials are able to refract light to the left, or at a negative angle. Natural materials can't do this.

"This backward-bending characteristic provides scientists the ability to control light similar to the way they use semiconductors to control electricity, which opens a wide range of potential applications," Soukoulis said.

One possibility is using metamaterials to develop a flat superlens that operates in the visible light spectrum.

"Such a lens would offer superior resolution over conventional technology, capturing details much smaller than one wavelength of light to vastly improve imaging for materials or biomedical applications," Soukoulis said. "A metamaterial superlens could give researchers the power to see inside a human cell or observe DNA."

The Science article by Soukoulis and Wegener describes the development of optical metamaterials from thin films to 3-D nanostructures. They also describe the challenges of further, practical development of the new materials.

"First, the structures must be tiny and are therefore difficult and expensive to produce," Soukoulis said. "Optical metamaterials also absorb light, making it difficult to create a metamaterial superlens."

But Soukoulis and Wegener offer some hope in their paper. They say experiments have demonstrated optical metamaterials can operate within the visible light spectrum, 3-D optical metamaterials can be produced and light loss in metamaterials can be reduced.

They wrote the ideal optical metamaterial requires all three properties. Wrapping them all into one new metamaterial will take more research and development. And then, researchers will need to find ways to reduce the cost of production.

But, wrote Soukoulis and Wegener, the introduction of advanced fabrication techniques to metamaterials research "may lead to realization of such designer materials."
-end-


Iowa State University

Related Metamaterials Articles from Brightsurf:

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Origami metamaterials show reversible auxeticity combined with deformation recoverability
New research by Northwestern Engineering and Georgia Institute of Technology expands the understanding of origami structures, opening possibilities for mechanical metamaterials to be used in soft robotics and medical devices.

Temporal aiming with temporal metamaterials
Achieving a controllable manipulation of electromagnetic waves is important in many applications.

VR and AR devices at 1/100 the cost and 1/10,000 the thickness in the works
Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering and doctoral student in mechanical engineering Gwanho Yoon at POSTECH with the research team at Korea University have jointly developed moldable nanomaterials and a printing technology using metamaterials, allowing the commercialization of inexpensive and thin VR and AR devices.

Virtualized metamaterials opens door for acoustics application and beyond
Scientists from the Hong Kong University of Science and Technology (HKUST) have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program.

In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.

Induced flaws in metamaterials can produce useful textures and behavior
A new Tel Aviv University study shows how induced defects in metamaterials -- artificial materials the properties of which are different from those in nature -- also produce radically different consistencies and behaviors.

Researchers use metamaterials to create two-part optical security features
Researchers have developed advanced optical security features that use a two-piece metamaterial system to create a difficult-to-replicate optical phenomenon.

Artificial intelligence (AI) designs metamaterials used in the invisibility cloak
The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning.

Scientists take a 'metamaterials' approach to earthquake damage
At the SSA 2019 Annual Meeting, seismologists from around the world will discuss how metamaterial theory might be applied to everything from developing deflective barriers to manipulating the layout of buildings within a city as a way to minimize the impact of damaging surface seismic waves.

Read More: Metamaterials News and Metamaterials Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.