Tools used to decipher 'histone code' may be faulty

December 16, 2010

CHAPEL HILL, N.C. - The function of histones -- the proteins that enable yards of DNA to be crammed into a single cell -- depends on a number of chemical tags adorning their exterior. This sophisticated chemical syntax for packaging DNA into tight little coils or unraveling it again -- called the "histone code" -- is the latest frontier for researchers bent on understanding how genetics encodes life.

But recent research from the University of North Carolina at Chapel Hill has found a number of issues with histone antibodies, the main tools used to decipher this code, suggesting they may need more rigorous testing.

"When I have presented our findings at major meetings, the reactions of my peers have been shock and awe across the board," said senior study author Brian Strahl, PhD, associate professor of biochemistry and biophysics at UNC.

"Hundreds and hundreds of researchers around the world use them and assume they are accurate. Yet we have found that they need to be used with caution." Strahl is a member of the UNC Lineberger Comprehensive Cancer Center.

The results of the study, which appears online December 16, 2010, in the journal Current Biology, also found that the proteins that interpret the histone instructions are affected not just by the specific chemical tag they land on but also by other tags in the neighborhood.

The "Histone Code" was first proposed almost ten years ago by Strahl and epigenetics researcher C. David Allis, who was his postdoctoral advisor at the time. In a review article published in the journal Nature that has since been cited over 3000 times, Strahl and Allis suggested a model of how histones and their posttranslational modifications may function in chromatin.

Histones are the protein spools around which strands of DNA are wrapped to form a package called chromatin. Depending on the modifications or tags decorating the histones, DNA is either closed up tightly within this package or lies open so that its genes can be read.

Strahl and Allis hypothesized that distinct combinations of histone modifications work together to form a code, akin to the classic genetic code in which distinct combinations of nucleotides make an amino acid. These histone modifications - chemical changes like phosphorylation, acetylation and methylation -- generate a language that is interpreted through the ability to recruit the proteins that modulate chromatin.

"But this histone code is way more complicated, because there are over a 100 different histone modifications, and they are working in a three-dimensional space that is very difficult to visualize," said Strahl. "We can't say that this mark or this combination of modifications will always mean a certain thing. But what I think we can say is that multiple modifications can help tip the balance of one chromatin state to another, making the underlying DNA more or less accessible to the protein machinery."

In order to uncover what some of those codes might be, the researchers started generating chunks of histone proteins, each engineered to contain various combinations of modifications. In a completely new approach to the histone code, Strahl and his colleagues printed these modified chunks or peptides onto glass slides, generating peptide arrays akin to DNA arrays.

When they tested widely used commercial antibodies that were directed against specific modifications on histones, like methylysine or methylarginine, they found the antibodies didn't always recognize the site they were supposed to, sometimes even binding to off-targets better than their intended target.

The results fit nicely with a study published recently in Nature Structural Biology by Jason Lieb, Ph.D., a professor of biology at UNC and a Lineberger Center member. Lieb used older approaches like immunofluorescence, CHIP and Western blots to show that many commercial antibodies were not performing as they should.

An additional finding of the study by Strahl and colleagues was that antibodies, as well as the proteins that naturally bind chromatin, were greatly affected by neighboring modifications.

"This result gives further support to the idea of the histone code, in that the ability of a protein to bind to histones may depend on a particular modification landscape and not just one single modification" said Strahl. "The presence of an acetylation site nearby could impact the binding of a protein at its intended phosphorylation site. So altogether these modifications generate a landscape that is vitally important in how proteins read the histone code."
-end-
The research was funded by the National Institutes of Health. Study co‑authors were Stephen Fuchs, Ph.D., a postdoctoral scientist in Strahl's lab, and Krzysztof Krajewski , a research assistant professor at UNC.

University of North Carolina Health Care

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.