Plasma treatment zaps viruses before they can attack cells

December 16, 2011

Adenoviruses can cause respiratory, eye, and intestinal tract infections, and, like other viruses, must hijack the cellular machinery of infected organisms in order to produce proteins and their own viral spawn. Now an international research team made up of scientists from Chinese and Australian universities has found a way to disrupt the hijacking process by using plasma to damage the viruses in the laboratory environment, before they come into contact with host cells.

The researchers prepared solutions containing adenoviruses and then treated the samples with a low-temperature plasma created by applying a voltage to a gaseous mixture in a syringe. The strong electric field energized electrons that collided with molecules in the gas, generating charged particles and highly reactive species such as oxygen atoms that likely etched away the protein shell of the viruses and damaged or destroyed the viral DNA. When the virus solutions were later added to colonies of embryonic kidney cells, the plasma-treated samples showed much less viral activity, as measured by the amount of a florescent virus protein the infected kidney cells produced. If the virus solution was covered during treatment to maximize plasma-virus interactions, more than 99 percent of the viruses could be deactivated in eight minutes. The technique is described in a paper accepted for publication in the AIP's journal Applied Physics Letters.

Adenoviruses pose life-threatening risks to patients undergoing stem-cell therapy, so the anti-viral plasma treatment may help pave the way to safer therapies, the researchers write. Because plasma jets have multiple biomedical applications, the team is also developing a portable device that generates plasma by using a 12 V battery to decompose and ionize air, says Dr. XinPei Lu at the HuaZhong University of Science and Technology in China and leader of the team. The device might be used in rural areas and battlefields, according to Lu.
-end-
Article: "Room-temperature, atmospheric plasma needle reduces adenovirus gene expression in HEK 293A host cells" is accepted for publication in Applied Physics Letters.

Authors: Z. Xiong (1), X. Lu (1), Y. Cao (2), Q. Ning (3), K. Ostrikov (4), Y. Lu (5), X. Zhou (2), and J. Liu (3).

(1) State Key Laboratory of Advanced Electromagnetic Engineering and Technology, HuaZhong University of Science and Technology, China

(2) Department of Stomatology, Tongji Hospital, HuaZhong University of Science and Technology, China

(3) Laboratory of Infectious Immunology, Tongji Hospital, HuaZhong University of Science and Technology, China

(4) Plasma Nanoscience Centre Australia, CSIRO Materials Science and Engineering and School of Physics, the University of Sydney, Australia

(5) School of Physics, Anhui University, China

American Institute of Physics

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.