New system may one day steer microrobots through blood vessels for disease treatment

December 16, 2011

Microscopic-scale medical robots represent a promising new type of therapeutic technology. As envisioned, the microbots, which are less than one millimeter in size, might someday be able to travel throughout the human bloodstream to deliver drugs to specific targets or seek out and destroy tumors, blood clots, and infections that can't be easily accessed in other ways.

One challenge in the deployment of microbots, however, is developing a system to accurately "drive" them and maneuver them through the complex and convoluted circulatory system, to a chosen destination. Researchers from Korea's Hanyang University in Seoul and Chonnam National University in Gwangju now describe, in the AIP's Proceedings of the 56th Annual Conference on Magnetism and Magnetic Materials, a new navigation system that uses an external magnetic field to generate two distinct types of microbot movements: "helical", or corkscrew-like, motions, which propel the microbots forward or backward, or even allow them to "dig" into blood clots or other obstructions; and "translational," or side-to-side motions, which allow the 'bots to, for example, veer into one side of a branched artery.

In lab tests, the researchers used the system to accurately steer a microbot through a mock blood vessel filled with water. The work, the researchers say, could be extended to the "precise and effective manipulation of a microbot in several organs of the human body, such as the central nervous system, the urinary system, the eye, and others."
-end-
Article: "Magnetic Navigation Systems for the Precise Helical and Translational Motions of a Microrobot in Human Blood Vessels" is part of the Proceedings of the 56th Annual Conference on Magnetism and Magnetic Materials, to be published in the Journal of Applied Physics in April.

Authors: Seungmun Jeon (1), Gunhee Jang (1), Hyunchul Choi (2), Sukho Park (2), and Jongoh Park (2).

(1) Hanyang University, Korea,

(2) Chonnam National University, Korea

American Institute of Physics

Related Blood Clots Articles from Brightsurf:

New cause of COVID-19 blood clots identified
A new study reveals that COVID-19 triggers production of antibodies circulating through the blood, causing clots in people hospitalized with the disease.

Children who take steroids at increased risk for diabetes, high blood pressure, blood clots
Children who take oral steroids to treat asthma or autoimmune diseases have an increased risk of diabetes, high blood pressure, and blood clots, according to Rutgers researchers.

COVID-19 may cause deadly blood clots
COVID-19 may increase the risk of blot cots in women who are pregnant or taking estrogen with birth control or hormone replacement therapy, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

New evidence for how blood clots may form in very ill COVID-19 patients
Neutrophil Extracellular Traps (NETs) have been implicated in causing excessive clotting in cancer patients.

Researchers find new way to detect blood clots
Researchers in the Department of Biomedical Engineering at Texas A&M University are working on an entirely new way to detect blood clots, especially in pediatric patients.

High rate of blood clots in COVID-19
COVID-19 is associated with a high incidence of venous thromboembolism, blood clots in the venous circulation, according to a study conducted by researchers at Brighton and Sussex Medical School (BSMS), UK.

New tool helps distinguish the cause of blood clots
A new tool using cutting-edge technology is able to distinguish different types of blood clots based on what caused them, according to a study published today in eLife.

Hookah smoke may be associated with increased risk of blood clots
In a new study conducted in mice, researchers found that tobacco smoke from a hookah caused blood to function abnormally and be more likely to clot and quickly form blood clots.

Reducing the risk of blood clots in artificial heart valves
People with mechanical heart valves need blood thinners on a daily basis, because they have a higher risk of blood clots and stroke.

New study provides insight into the mechanisms of blood clots in cancer patients
Researchers have identified a potential new signaling pathway that may help further the understanding of blood clot formation in cancer patients and ultimately help prevent this complication from occurring.

Read More: Blood Clots News and Blood Clots Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.