Chinese scientists discover evidence of giant panda's population history and local adaptation

December 16, 2012

December 16, 2012, Shenzhen, China - A research team, led by Institute of Zoology of Chinese Academy of Sciences and BGI, has successfully reconstructed a continuous population history of the giant panda from its origin to the present. The findings suggested whereas global changes in climate were the primary drivers in panda population fluctuation for millions of years, human activities were likely to underlie recent population divergence and serious decline. This work reveals a good example for assessing and establishing the best conservation method for other endangered species. The latest study was published online in Nature Genetics.

The giant panda is the rarest member of the bear family. Looked upon as the ambassador for all endangered species, it is a well-recognized symbol of international wildlife conservation. The giant panda is currently threatened by continued habitat loss, human persecution, among others. Its dietary specialization, habitat isolation, and reproductive constraints have led to a perception that this is a species at an "evolutionary dead end", destined for deterministic extinction in the modern world.

In this study, researchers carried out whole genome resequencing of 34 wild giant pandas and found the current six geographic populations of giant panda could be divided into three genetic populations, including Qinling (QIN), Minshan (MIN) and Qionglai-Daxiangling-Xiaoxiangling-Liangshan (QXL). Through reconstructing giant panda's population history, they found several important evolutionary events such as two population expansions, two bottlenecks and two population divergences.

The giant panda has a very special bamboo diet, while its ancestor was omnivorous or carnivores. As early as about 3 Myr ago, they probably had already completed their dietary swift and pygmy panda emerged with bamboo as its primary diet. The warm and wet weather at that time provided ideal conditions for the spread of bamboo forests that further led to the first population expansion of giant panda. However, about 0.7 Myr ago, the panda population began to decline due to the two largest Pleistocene glaciations happened in China, and its first population bottleneck occurred at about 0.3 Myr ago. During that period, pygmy panda was gradually replaced by another subspecies - baconi panda that has larger body size.

After the retreat of the Penultimate Glaciations, giant panda's second population expansion happened and it reached its population peak between 30~50 thousand years (kyr) ago. The warm weather in the Greatest Lake Period (30~40 kyr ago) and alpine conifer forest may play an important role in the flourishing of the panda population. However, during the period of last glacial maximum (LGM), the climate was cold, dry, and inhospitable with frequent storms and a dust-laden atmosphere. Under such harsh environment, extensive panda habitats were loss and its second population bottleneck occurred.

The more recent panda population history showed that the panda population separated into Qinling (QIN) and non-QIN populations at about 0.3Myr ago, and then the non-QIN cluster diverged into two populations, the Minshan (MIN) and Qionglai-Daxiangling-Xiaoxiangling-Liangshan (QXL) at about 2.8 KYA ago. Subsequently, the three populations were different in the ways of fluctuation. For example, there was a drastic decline in the QIN, a slight increase in the MIN and a more remarkable growth in the QXL populations.

Researchers identified the signals of panda's local adaptation. They found the largest group of selected genes in these populations was related to sensory system. However, the two genes, Tas2r49 and Tas2r3, were associated with bitter taste and were under directional selection between the QIN and non-QIN populations, showing no signal of directional selection between MIN and QXL populations.

As a form of olfactory communication, odor perception is crucial for reproduction and survival of giant pandas in the dense forest. Researchers found the MIN and QXL populations had fewer directionally selected genes than QIN and non-QIN, suggesting less variation happens in the selection processes between MIN and QXL. They also found the evidence that population fluctuations were driven by global climate shifts, but recent human activities have likely caused population divergence and the serious recent decline.

Shancen Zhao, Project Manager from BGI, said, "We have identified three genetic populations of giant panda for the current six geographic populations lived in western of China. The varied local adaptations found in our study provide invaluable resource for researchers to better select effective conservation methods to rescue the giant panda even other endangered species. The translocation of wild-caught individuals or releasing the captive-bred ones may be a feasible approach. "
-end-
About BGI

BGI was founded in 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, which includes both private non-profit genomic research institutes and sequencing application commercial units, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 250 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, have sequenced the human Gut metagenome, and a significant proportion of the genomes for 1,000 genomes. For more information about BGI please visit www.genomics.cn.

Media Contact:

Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn
www.genomics.cn

BGI Shenzhen

Related Endangered Species Articles from Brightsurf:

After election: making the endangered species act more effective
Following the presidential election, a leading group of scientists are making the case that a 'rule reversal' will not be sufficient to allow the Endangered Species Act to do its job.

Improving the Endangered Species Act requires more than rule reversal
Although species are disappearing at an alarming rate worldwide, the Trump administration recently finalized a series of substantial changes to the regulations that underpin the U.S.

New shark research targets a nearly endangered species
They are some of the most iconic and unique-looking creatures in our oceans.

Preservation of testicular cells to save endangered feline species
A research team at the German Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) developed a method to isolate and cryopreserve testicular cells.

Endangered species on supermarket shelves
Imagine purchasing products from your local grocer, only to find out that those products are comprised of critically endangered species!

What is an endangered species?
What makes for an endangered species classification isn't always obvious.

In developing nations, national parks could save endangered species
A new study of animal populations inside and outside a protected area in Senegal, Niokolo-Koba National Park, shows that protecting such an area from human interaction and development preserves not only chimps but many other mammal species.

New mathematical model can help save endangered species
One of the greatest challenges in saving endangered species is to predict if an animal population will die out.

Bioactive novel compounds from endangered tropical plant species
A Japan-based research team led by Kanazawa University has isolated 17 secondary metabolites, including three novel compounds from the valuable endangered tropical plant species Alangium longiflorum.

Newly discovered hummingbird species already critically endangered
In 2017, researchers working in the Ecuadorian Andes stumbled across a previously unknown species of hummingbird -- but as documented in a new study published in The Auk: Ornithological Advances, its small range, specialized habitat, and threats from human activity mean the newly described blue-throated hillstar is likely already critically endangered.

Read More: Endangered Species News and Endangered Species Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.