New technique could make cell-based immune therapies for cancer safer and more effective

December 16, 2012

A team led by Michel Sadelain, MD, PhD, Director of the Center for Cell Engineering at Memorial Sloan-Kettering Cancer Center, has shown for the first time the effectiveness of a new technique that could allow the development of more-specific, cell-based immune therapies for cancer. Their findings were reported online today in Nature Biotechnology.

Immunotherapies -- which make use of patients' own immune cells that have been augmented in the laboratory -- have shown some early success in the treatment of blood cancers including certain types of leukemia. For most cancers, however, cell-based therapies have been harder to develop, in large part because it has been difficult for investigators to train immune cells to specifically attack cancer cells without damaging normal, healthy cells in the body.

The treatment approach, known as adoptive cell transfer (ACT), involves engineering an immune cell called a T cell. In the ACT process, T cells are removed from a patient and a gene is added to allow the T cells to recognize a certain antigen on the surface of a cancer cell. The enhanced cells are grown in the laboratory and then infused back into the patient to seek out and attack cancer cells.

"We are getting better at working with these T cells and enhancing them so that we can get a powerful immunological response against cancer," Dr. Sadelain says. "The dilemma now is that we are concerned with limiting these responses and making them as targeted as possible to avoid potentially harmful side effects."

Cancer cells overproduce certain antigens, which can help T cells to recognize them, but those same antigens are often found in lower levels on healthy cells. "There are very few antigens, if any, that are found only on cancer cells," Dr. Sadelain explains.

"Now we are bringing in a completely new concept," he adds. "If there is no single unique antigen that is found on the surface of the cancer cell we want to target, we instead create T cells that recognize two different antigens found on the tumor cell -- a signature that will be unique to that type of cancer -- and only attack cells with both antigens, sparing the normal cells that express either antigen alone."

The new technique makes use of receptors known as chimeric antigen receptors (CARs), which allow T cells to target antigens on the surface of a tumor cell, coupled with another type of receptor called a chimeric costimulatory receptor (CCR), by which the T cells can recognize a second antigen.

The CAR and the CCR work together through a process known as balanced signaling, in which the presence of either antigen on its own is not enough to trigger the immune response. Only tumor cells that carry both antigens will be targeted.

In the Nature Biotechnology study, the team created T cells that carried a CAR for an antigen called PSMA and a CCR for an antigen called PSCA. Both PSMA and PSCA are found on prostate cancer cells. The investigators then generated mouse models of prostate cancer and infused the mice with the engineered cells. They found that the T cells attacked only tumors that carried antigens for both PSMA and PSCA.

"We are the first to test this concept and show that it works," Dr. Sadelain concludes. "We plan to develop clinical trials based on this approach, although we have not yet decided whether the first study will be a trial for prostate cancer or for a different type of cancer using two other antigens. Ultimately, our goal is to create targeted immunotherapies that are both potent and safe for patients."
-end-
In addition to members of Dr. Sadelain's laboratory, coauthors on the study included two researchers from TU Dresden in Germany.

This work was supported by philanthropic funds provided by the Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center, the Major Family Fund for Cancer Research at Memorial Sloan-Kettering, Mr. and Mrs. Joel S. Mallah, and Mr. Lewis Sanders.

Memorial Sloan Kettering Cancer Center

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.