ORNL devises recipe to fine-tune diameter of silica rods

December 16, 2013

OAK RIDGE, Tenn., Dec. 16, 2013 - By controlling the temperature of silica rods as they grow, researchers at the Department of Energy's Oak Ridge National Laboratory could be setting the stage for advances in anti-reflective solar cells, computer monitors, TV screens, eye glasses and more.

The goal of fabricating fixed-size one-dimensional silica structures and being able to precisely control the diameter during growth has long eluded scientists. Now, Panos Datskos and Jaswinder Sharma have demonstrated what they describe as the addressable local control of diameter of each segment of the silica rod.

"In nature, many intricate structures develop and grow in response to their environments," said Sharma, a Wigner Fellow and corresponding author of the Angewandte Chemie International Edition paper that outlines the process. "For example, in addition to genotype, shell shape is also controlled by the local environment in many oysters and scallops."

Taking a cue from nature, by manipulating the reaction temperature during growth, Sharma and co-author Datskos were able to control thickness while retaining control of each segment of the rod separately.

When the researchers increased growth temperatures, the segment diameter became smaller. By increasing incubation times, they obtained longer segments at the same temperature. Higher temperatures for the same incubation time produced longer segments of the glass-like silica rods.

It appears that the correlation between temperature and diameter is a result of the relationship between temperature and the size of the emulsion droplet, according to the authors, who discovered that the higher the temperature, the smaller the emulsion droplet.

The researchers envision this finding leading to further opportunities that require vertically aligned arrays of silica rods for gradually changing a refractive index on a large scale. The paper, titled "Synthesis of Segmented Silica Rods by Regulation of the Growth Temperature," is available at http://onlinelibrary.wiley.com/doi/10.1002/anie.201308140/full.
Funding was provided by the Laboratory Directed Research and Development Program. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is supported by DOE's Office of Science.

The Center for Nanophase Materials Sciences is one of five DOE Nanoscale Science Research Centers, national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of the time. For more information, please visit science.energy.gov.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:
Twitter - http://twitter.com/oakridgelabnews
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

DOE/Oak Ridge National Laboratory

Related Temperature Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

A drop in temperature
In the nearly two centuries since German physician Carl Wunderlich established 98.6°F as the standard ''normal'' body temperature, it has been used by parents and doctors alike as the measure by which fevers -- and often the severity of illness -- have been assessed.

Kitchen temperature supercurrents from stacked 2D materials
A 'stack' of 2D materials could allow for supercurrents at ground-breakingly warm temperatures, easily achievable in the household kitchen.

Get diamonds, take temperature
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers.

Chemical thermometers take temperature to the nanometric scale
Scientists from the Coordination Chemistry Laboratory and Laboratory for Analysis and Architecture of Systems, both of the CNRS, recently developed molecular films that can measure the operating temperature of electronic components on a nanometric scale.

How reliable are the reconstructions and models for past temperature changes?
Understanding of climate changes during the past millennia is crucial for the scientific attribution of the current warming and the accurate prediction of the future climate change.

New method measures temperature within 3D objects
University of Wisconsin-Madison engineers have made it possible to remotely determine the temperature beneath the surface of certain materials using a new technique they call depth thermography.

Who takes the temperature in our cells?
The conditions in the environment are subject to large fluctuations.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.

Read More: Temperature News and Temperature Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.