Brain waves encode information as time signals

December 16, 2013

How information is processed and encoded in the brain is a central question in neuroscience, as it is essential for high cognitive function such as learning and memory. Theta-gamma oscillations are "brain waves" observed in the hippocampus of behaving rats, a brain region involved in learning and memory. In rodents, theta-gamma oscillations are associated with information processing during exploration and spatial navigation. However, the underlying synaptic mechanisms have so far remained unclear. In research published this week in the journal Neuron, postdoc Alejandro Pernía-Andrade and Professor Peter Jonas, both at the Institute of Science and Technology Austria (IST Austria), discovered the synaptic mechanisms underlying oscillations at the dentate gyrus (main entrance of the hippocampus). Furthermore, the researchers suggest a role for these oscillations in the coding of information by the dentate gyrus principal neurons. Thus, these findings contribute to a better understanding of how information is processed in the brain.

Brain oscillations are, in fact, rhythmic changes in voltage in the extracellular space, referred to as electrical brain signals associated with the processing of information. These electrical signals are similar to those seen in electro-encephalographic recordings (EEG) in humans. Pernía-Andrade and Jonas observed these oscillations in a brain region called the hippocampus in behaving rats, and recorded oscillations occurring in this area using extracellular probes. To understand how oscillations are generated and which synaptic events trigger these oscillations, the researchers looked at synaptic transmission in granule cells (principal cells at the main entrance of the hippocampus) from both the extracellular (oscillations) and the intracellular perspectives (synaptic currents and neuronal firing), and then correlated the two. They discovered that excitatory and inhibitory synaptic signals contributed to different frequencies of oscillations, with excitation from the entorhinal cortex generating theta oscillations and inhibition by local dentate gyrus interneurons generating gamma oscillations. Together, excitation and inhibition provide the rhythmic signals of oscillations. It has been speculated that oscillations may help the dentate gyrus to encode information by acting as reference signals in temporal coding. Pernía-Andrade and Jonas now show that granule cell neurons send signals only at specific times in the cycle of oscillations. This so-called "phase locking" is necessary if oscillations are to function as reference signals in temporal coding.

The precise, high-resolution recording from granule cells necessary for these discoveries was possible only through technological innovations by Pernía-Andrade and Jonas, as previously no equipment was available to record synaptic signals in active rats in such high resolution. They are the result of a collaboration with the Miba machine shop, IST Austria's electrical and mechanical SSU (Scientific Service Unit). Adapting commercially available equipment and custom-designing tools, Pernía-Andrade, Jonas and Todor Asenov, manager of the Miba machine shop, produced the first tools for precise biophysical analysis in active rats. This research is therefore not only a scientific advance but also represents a significant technological and conceptual progress in the quest to understand neuronal behavior under natural conditions.
-end-


Institute of Science and Technology Austria

Related Hippocampus Articles from Brightsurf:

Brain remapping dysfunction causes spatial memory impairment in Alzheimer's disease
A research group elucidated the brain circuit mechanism that cause of spatial memory impairment in Alzheimer's disease.In the future, improving brain remapping function may reverse spatial memory impairment in patients with Alzheimer's disease.

Impact of family income on learning in children shaped by hippocampus in brain
A new study by a team of researchers at the University of Toronto identifies the region of the brain's hippocampus that links low income with decreased memory and language ability in children.

Inhibitory interneurons in hippocampus excite the developing brain
A new study from the George Washington University, however, reports that in some critical structures of the developing brain, the inhibitory neurons cause excitation rather than suppression of brain activity.

A good blood supply is good for memory
Memory performance and other cognitive abilities benefit from a good blood supply to the brain.

Scientists identify circuit responsible for building memories during sleep
Neuroscientists at the University of Alberta have identified a mechanism that may help build memories during deep sleep, according to a new study.

Lack of oxygen doesn't kill infant brain cells, as previously thought
Research, conducted at OHSU and published in the Journal of Neuroscience, raises new concerns about the vulnerability of the preterm brain to hypoxia.

Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.

How the olfactory brain affects memory
How sensory perception in the brain affects learning and memory processes is far from fully understood.

Penn researchers discover the source of new neurons in brain hippocampus
Researchers have shown, in mice, that one type of stem cell that makes adult neurons is the source of this lifetime stock of new cells in the hippocampus.

Scientists find first evidence for necessary role of the human hippocampus in planning
A team of scientists reports finding the first evidence that the human hippocampus is necessary for future planning.

Read More: Hippocampus News and Hippocampus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.