Graphene nanoribbons an ice-melting coat for radar

December 16, 2013

HOUSTON - (Dec. 16, 2013) - Ribbons of ultrathin graphene combined with polyurethane paint meant for cars is just right for deicing sensitive military radar domes, according to scientists at Rice University.

The Rice lab of chemist James Tour, in collaboration with Lockheed Martin, developed the compound to protect marine and airborne radars with a robust coating that is also transparent to radio frequencies.

The research was published this week in the American Chemical Society journal Applied Materials and Interfaces.

Bulky radar domes (known as "radomes") like those seen on military ships keep ice and freezing rain from forming directly on antennas. But the domes themselves must also be kept clear of ice that could damage them or make them unstable. This task is usually accomplished with a metal framework that supports and heats ceramic alumina (aluminum oxide), Tour said. But these materials are heavy, and metallic elements must be installed far from the source of radio signals to keep from interfering.

"It's very hard to deice these alumina domes," Tour said. "It takes a lot of power to heat them when they're coated with ice because they're very poor conductors."

Enter graphene, the single-atom-thick sheet of carbon that both conducts electricity and, because it's so thin, allows radio frequencies to pass unhindered. Spray-on deicing material that incorporates graphene nanoribbons would be lighter, cheaper and more effective than current methods, Tour said.

"This started when (Lockheed Martin engineer) Vladimir Volman saw a presentation by Yu Zhu, a postdoc in my lab at the time," he said. "Volman had calculated that one could pass a current through a graphene film less than 100 nanometers thick and get resistive heating that would be great for deicing. Zhu was presenting his technique for spraying nanoribbons films and Volman recognized the potential."

Pristine graphene transmits electricity ballistically and would not produce enough heat to melt ice or keep it from forming, but graphene nanoribbons (GNRs) unzipped from multiwalled carbon nanotubes in a chemical process invented by the Tour group in 2009 do the job nicely, he said. When evenly dispersed on a solid object, the ribbons overlap and electrons pass from one to the next with just enough resistance to produce heat as a byproduct. The effect can be tuned based on the thickness of the coating, Tour said.

In initial experiments, the team led by Volman and Zhu spray-coated a surface with soluble GNRs. "They said it works great, but it comes off on our fingers when we touch it," Tour said.

He found the solution in a Houston auto parts store. "I bought some polyurethane car paint, which is extremely robust. On a car, it lasts for years. So when we combined the paint and GNRs and coated our samples, it had all the properties we needed."

Lab samples up to two square feet were assembled using a flexible polymer substrate, polyimide, which was spray-coated with polyurethane paint and allowed to dry. The coated substrate was then put on a hotplate to soften the paint, and a thin GNR coat was airbrushed on. When dried, the embedded ribbons became impossible to remove. Tour said the researchers have also tried putting GNRs under the polyurethane paint with good results.

The 100-nanometer layer of GNRs -- thousands of times thinner than a human hair -- was hooked to platinum electrodes. Using voltage common to shipboard systems, the compound was sufficient to deice lab samples cooled to -4 degrees Fahrenheit within minutes. Further experiments found them to be nearly invisible to radio frequencies.

Tour said the availability of nanoribbons is no longer an issue now that they're being produced in industrial quantities.

"Now we're going to the next level," he said, noting that GNR films made into transparent films might be useful for deicing car windshields, a project the lab intends to pursue.

Volman suggested the material would make a compelling competitor to recently touted nanotube-based aerogels for deicing airplanes in the winter. "We have the technology; we have the material," he said. "It's very durable and can be sprayed on to heat any kind of surface."
-end-
Co-authors of the paper include Rice graduate students Abdul-Rahman Raji and Changsheng Xiang; Wei Lu and Carter Kittrell, research scientists at Rice's Richard E. Smalley Institute for Nanoscale Science and Technology; and Bostjan Genorio, a former postdoctoral researcher at Rice, now a visiting scientist at Argonne National Laboratory. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

The Lockheed Martin Corp. through the LANCER IV program, the Air Force Office of Scientific Research and the Office of Naval Research supported the research.

Watch a video of an experiment in the Tour lab here: http://youtu.be/YmuFvJZlks0

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/am404203y

This news release can be found online at http://news.rice.edu/2013/12/16/graphene-nanoribbons-an-ice-melting-coat-for-radar/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related Materials:

Tour Group: http://www.jmtour.com

Smalley Institute for Nanoscale Science and Technology: http://cnst.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2013/12/1216_ICE-1-web.jpg

A microscopically thin layer of graphene nanoribbons embedded in polyurethane paint on top of a polyimide substrate forms a heating element that can keep structures free of ice. The material was developed at Rice University. The scale bar equals 100 micrometers. (Credit: Tour Group/Rice University)

http://news.rice.edu/wp-content/uploads/2013/12/1216_ICE-2-web.jpg

Graphene nanoribbons embedded in polyurethane paint, seen in an electron microscope image, are part of a deicing solution created by Rice University and Lockheed Martin. The scale bar equals 1 micrometer. (Credit: Tour Group/Rice University)

http://news.rice.edu/wp-content/uploads/2013/12/1216_ICE-3-web.jpg

A new compound created by Rice University and Lockheed Martin provides a thin, robust ice-melting coat for marine, airborne and other uses. The active element consists of carbon nanotubes "unzipped" into ribbons. (Credit: Tour Group/Rice University)

http://news.rice.edu/wp-content/uploads/2013/12/1216_ICE-4-web.jpg

A waveguide in the Rice University lab of chemist James Tour frames a graphene nanoribbon film for testing. Rice developed the material as a thin, robust deicer for radar domes and other applications. It was found to melt ice from surfaces in temperatures as low as -4 degrees Fahrenheit. (Credit: Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Rice University

Related Nanoribbons Articles from Brightsurf:

Chemical scissors snip 2D transition metal dichalcogenides into nanoribbon
One of the biggest challenges in making hydrogen production clean and cheap has been finding an alternative catalyst necessary for the chemical reaction that produces the gas, one that is much cheaper and abundant than the very expensive and rare platinum that is currently used.

On-surface synthesis of graphene nanoribbons could advance quantum devices
An international multi-institution team of scientists has synthesized graphene nanoribbons -- ultrathin strips of carbon atoms -- on a titanium dioxide surface using an atomically precise method that removes a barrier for custom-designed carbon nanostructures required for quantum information sciences.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

The right formula for scaling production of promising material to decontaminate water
An international team of researchers have found a way to refine and reliably produce an unpredictable and hard-to-control material that could impact environmental conservation, energy and consumer electronics.

Understanding electron transport in graphene nanoribbons
New research published in EPJ Plus aims to better understand the electron transport properties of graphene nanoribbons (GNRs) and how they are affected by bonding with aromatics - a key step in designing technology such as chemosensors.

Peel-apart surfaces drive transistors to the ledge
Surfaces featuring atomic-scale ledges and steps can act as reusable templates for producing nanoelectronic components.

World's widest graphene nanoribbon promises the next generation of miniaturized electronics
Standard semiconductor technology is reaching its limit in miniaturization, but the demand for smaller electrical devices with higher performance continues to grow.

Science study: Chemists achieve breakthrough in the synthesis of graphene nanoribbons
Graphene Nanoribbons might soon be much easier to produce. An international research team led by Martin Luther University Halle-Wittenberg (MLU), the University of Tennessee and Oak Ridge National Laboratory in the U.S. has succeeded in producing this versatile material for the first time directly on the surface of semiconductors.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

Electron correlations in carbon nanostructures
Graphene nanoribbons are only a few carbon atoms wide and have different electrical properties depending on their shape and width.

Read More: Nanoribbons News and Nanoribbons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.