Nav: Home

New weapon in the fight against breast cancer

December 16, 2015

The first clinically-relevant mouse model of human breast cancer to successfully express functional estrogen receptor positive (ER+) adenocarcinomas has been developed by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab). The tumors generated in this system bear a striking resemblance to the class of tumors found in the vast majority of women with breast cancer, and especially to those whose cancer proves treatment-resistant. This model should be a powerful tool for testing therapies for aggressive ER+ breast cancers and for studying the biology and etiology of luminal cancers -- the most prevalent and deadliest forms of breast cancer.

In a study led by renowned breast cancer authority Mina Bissell, xenografts of the cell line '184AA3' consistently formed human estrogen receptor positive (ER+) luminal breast tumors in mice. ER+ luminal tumors account for nearly 80-percent of all newly diagnosed breast cancers each year and more women die from treatment-resistant luminal breast cancer than of all other breast cancer types combined.

"Our discovery of the conditions under which 184AA3 cells generate clinically-relevant luminal tumors is an important step towards defining and overcoming some of the remaining obstacles that have until now prevented development of accurate models of luminal breast cancers," says Bissell, Distinguished Scientist with Berkeley Lab's Biological Systems and Engineering Division. "The 184AA3 model will better enable us to identify the factors that promote aggressive phenotypes and how these factors might be suppressed to generate more benign phenotypes instead, or hopefully even eliminate the tumors and the metastatic cells. Such observations can also form the basis of new clinical therapeutics."

The paper describing the details of this new mouse model, and its cell culture counterpart, has been published in the Journal of Breast Cancer Research and Treatment. The paper is titled '184AA3: A Xenograft Model of ER+ Breast Adenocarcinoma.' Bissell is the corresponding author. The co-lead authors are Curt Hines and Irene Kuhn. Other co-authors are Kate Thi, Berbie Chu, Gaelen Stanford-Moore, Rocio Sampayo, James Garbe, Martha Stampfer and Alexander Borowsky.

ER+ luminal breast cancers are adenocarcinomas, meaning they start in cells with a secretory function, in this case the milk-producing luminal cells of the breast. Despite the prevalence of ER+ luminal tumors and their frequent (nearly 30-percent) conversion to treatment resistance, there are very few models of this cancer subtype available for the development of drugs. Further, the models that do exist have questionable clinical relevance in that they generate tumors that look and behave quite differently than human tumors.

"There is a great need for clinically-relevant models of ER+ luminal breast cancer," says Kuhn, a cancer cell biologist who also manages Bissell's laboratory group. "Until we are able to tailor truly personalized therapies for each woman, the great challenge for clinicians is to choose therapies based on their efficacy in a model that best mimics their patient's particular cancer. The fact that we have lacked relevant models of ER+ luminal breast cancer has thus made it difficult to determine which treatments will most likely be effective."

To develop their xenograft model of ER+ luminal breast cancer, Bissell, Kuhn, Hines and their colleagues looked at several cell line models of breast cancer progression. Such models allow exploration of early cancer transformative events, providing insight into the initiation and progress of tumors. Eventually they focused on a collection of cell lines known as the '184' series, which was created in the 1990s from women undergoing reduction mammoplasty by co-authors Stampfer and Garbe, both of whom are long-term and well-known researchers with the Berkeley Lab. That the 184AA3 model was developed from part of Stampfer and Garbe's 184 cell series means it can be used for etiological studies.

"To determine the tumorigenicity of 184-derived cell lines, we orthotopically xenografted each cell line possessing anchorage-independent growth into the fat pads, then monitored them for tumor growth in the mammary gland," says Hines, a scientist and a member of Bissell's research team. "Whereas most xenografts resulted in either squamous carcinomas or no tumors at all, 184AA3 consistently produced adenocarcinomas closely resembling clinical breast tumors."

Adds Bissell, "We were fortunate to work with Alexander Borowsky, a professor of breast pathology at UC Davis who was doing a sabbatical in my laboratory. He could expertly analyze the tumors that grew in these transplanted mice and pass judgment on how well the pathology mimicked that of human tumors."

A pressing goal for cancer researchers is recognizing different clinical forms and subtypes of breast tumors, and understanding how and why each type manifests. In their paper, Bissell, Kuhn, Hines and their co-authors state that the 184AA3 model is appropriate for studies of the etiology of ovarian hormone-independent adenocarcinomas and the identification of therapeutic targets, as well as for predictive testing and drug development.

"Defining the cellular origins and steps to malignant tumor progression are critical to improved and personalized cancer-prevention and treatment strategies," Kuhn says. "That's why we're not stopping with the 184AA3 model, exciting as it is! We're working to develop as many additional models of all the varieties of luminal breast cancer as we can."
-end-
This research was supported primarily by the Department of Defense Breast Cancer Research Program, the Breast Cancer Research Foundation in New York, and the National Cancer Institute.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE/Lawrence Berkeley National Laboratory

Related Breast Cancer Articles:

Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
Surgery to remove unaffected breast in early breast cancer increases
The proportion of women in the United States undergoing surgery for early-stage breast cancer who have preventive mastectomy to remove the unaffected breast increased significantly in recent years, particularly among younger women, and varied substantially across states.
Breast cancer patients with dense breast tissue more likely to develop contralateral disease
Breast cancer patients with dense breast tissue have almost a two-fold increased risk of developing disease in the contralateral breast, according to new research from The University of Texas MD Anderson Cancer.
Some early breast cancer patients benefit more from breast conservation than from mastectomy
Breast conserving therapy (BCT) is better than mastectomy for patients with some types of early breast cancer, according to results from the largest study to date, presented at ECC2017.
One-third of breast cancer patients not getting appropriate breast imaging follow-up exam
An annual mammogram is recommended after treatment for breast cancer, but nearly one-third of women diagnosed with breast cancer aren't receiving this follow-up exam, according to new findings presented at the 2016 Annual Clinical Congress of the American College of Surgeons.
Low breast density worsens prognosis in breast cancer
Even though dense breast tissue is a risk factor for breast cancer, very low mammographic breast density is associated with a worse prognosis in breast cancer patients.
Is breast conserving therapy or mastectomy better for early breast cancer?
Young women with early breast cancer face a difficult choice about whether to opt for a mastectomy or breast conserving therapy (BCT).
Breast density and outcomes of supplemental breast cancer screening
In a study appearing in the April 26 issue of JAMA, Elizabeth A.
Full dose radiotherapy to whole breast may not be needed in early breast cancer
Five years after breast-conserving surgery, radiotherapy focused around the tumor bed is as good at preventing recurrence as irradiating the whole breast, with fewer side effects, researchers from the UK have found in the large IMPORT LOW trial.

Related Breast Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...