Nav: Home

Dartmouth study sheds light on lake evaporation under changing climate

December 16, 2015

HANOVER, N.H. - Dartmouth scientists have shown for the first time how winds blowing across lakes affect the chemical makeup of water vapor above and evaporated from lakes, which may aid research into past and present water cycles under changing climate.

The findings, which appear in the journal Quaternary Science Reviews, are important because isotopic compositions of evaporation are used both by hydrologists who want to understand lake water balance and by paleoclimatologists who use lake isotopic records to reconstruct past climate. A PDF is available on request.

Evaporation is a vital part of the hydrological cycle, and isotopic compositions of lakes' vapor fluctuation are used to quantify regional water balance and to understand past climate records. In the Arctic, where lakes cover as much as 30 percent of the landscape, lake evaporation accounts for a significant amount of surface water flux. Knowledge of this flux is thus important to understanding the hydrological response to climate change. Changes in the Arctic's water balance are also inferred from ancient lake records obtained from sediment cores, which reflect changes of climate variables such as precipitation and evaporation. Quantifying evaporation changes is thus a critical part of paleoclimate studies based on lake sediment records.

The Dartmouth researchers focused on evaporation of three lakes 40 meters to six kilometers long on the tundra near Kangerlussuaq, Greenland. At each lake, they made meteorological measurements, including temperature, humidity and wind velocity. Water vapor above the lake and lake water were measured for oxygen and hydrogen isotopic compositions. Results showed that the evaporation rate and the isotopic ratio of the evaporated vapor are affected by winds blowing onto the lakes. Near the upwind shore, the evaporation rate is relatively high and deuterium and oxygen-18 (stable isotopes of water) abundances in water vapor flux are relatively low because the air blowing from land is dry. With distance, evaporation occurs and humidity increases, slowing down the evaporation.

For the first time, the researchers observed the vertical and horizontal components of vapor and isotopic gradients as relatively dry and isotopically depleted air moved across the lakes' surface. Since wind advection - or wind blowing horizontally -- above a lake alters the concentrations, gradients and evaporative fluxes of water isotopes, it alters the water balance and isotope ratios of the lake and the relationship between them. These effects are greatest for small lakes and decrease with increasing lake size along the wind direction.

"Our results provide the first quantification of the effect of wind on the isotopic fluxes of evaporation," says lead author Xiahong Feng, a professor of Earth Sciences. "The method of mobile vapor analysis combined with 2-D modeling can be applied to other environmental settings in which the size of advection effect on isotopic fluxes depends upon relationships among local meteorological and hydrological variables. Our results also suggest that incorporating isotopic vapor measurements can help constrain modeled evaporation rates, which is worth exploring further in future studies."
-end-
This work was supported by the National Science Foundation under grants for the Dartmouth Polar Environmental Change IGERT Program.

Professor Xiahong Feng is available to comment at Xiahong.Feng@dartmouth.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Dartmouth College

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...