Georgetown researcher leads effort to decode anti-malarial drug resistance

December 16, 2015

WASHINGTON (Dec. 16, 2015) -- Even as the global malarial pandemic appears to be on a decline, drug resistant malarial parasites are on the rise, says an infectious disease researcher at Georgetown University Medical Center, who is taking the lead on a multi-institutional effort to investigate the causes of this growing concern.

The National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, has awarded a team of scientists led by GUMC $2,100,000 over five years to study mutations in two genes within the mosquito-borne protozoans that allow the parasites to rapidly overcome commonly used anti-malarial drugs.

"Drug resistant malaria kills about one million people a year. We must get a handle on this death toll by defining molecular mechanisms responsible for this increasing resistance," says the study's principal investigator, Paul D. Roepe, PhD, co-director of the Georgetown Center for Infectious Disease. He is professor in the departments of chemistry, and biochemistry and cellular & molecular biology.

The project, led by Roepe, includes co-investigators at Columbia University and the University of California, San Diego.

The Georgetown center is known for its leading work in malarial drug resistance and drug discovery. It was the first to purify proteins encoded by the genes (PfCRT and PfMDR1) that can mutate and make chloroquine and other drugs ineffective; and to describe how PfCRT works. In another project, investigators led by Roepe have performed large-scale screening to find effective ant-malarial drug combinations. A $4.8 million NIH grant in 2014 to Roepe and his colleagues is designed to find the fastest ways to identify highly potent and synergistic drug combinations for both treatment and prevention.

Roepe and his colleagues study Plasmodium falciparum (P. falciparum), the most lethal malarial parasite, responsible for 80-90 percent of malarial deaths. "There are now hundreds, if not thousands, of different strains of the parasite, due to use of different drugs around the world," he says. "What is used in East Africa may be different from that used in West Africa, or in Southeast Asia and South America. Resistant strains arise in each region based on the specific treatments used."

The two genes he studies -- PfCRT and PfMDR1 -- are the best understood markers for drug resistant malaria. Understanding more about them may lead to new therapies or to lethal combinations of existing therapies, Roepe says. "We cannot use a single drug anymore to treat malaria, we must use combinations. In the drug screening work, we have posted dozens drug combinations that are effective against drug resistant P. falciparum on the web so that researchers can study them further.

"We hope this new study will provide additional critical information for rapidly identifying the best new therapies," he says.

The award granted to Roepe and his colleagues is number RO1A1056312.
-end-
About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award (UL1TR001409-01) from the National Institutes of Health.

Georgetown University Medical Center

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.