Nav: Home

Researchers elucidate network of genes that control when puberty begins

December 16, 2015

PORTLAND, Ore. - In expanding our knowledge of how the brain controls the process of sexual development, researchers at Oregon Healthy & Science University and the University of Pittsburgh have identified for the first time members of an elaborate superfamily of genes that regulate the timing of puberty in highly evolved nonhuman primates. The Zinc finger, or ZNF, gene family comprises approximately 800 individual genes.

A handful of genes in this network, operating within the neuroendocrine brain, serve as a 'neurobiological brake' that delay until the end of childhood the activation of hypothalamic genes responsible for launching puberty, thereby preventing the premature awakening of the process. The paper was published today in the journal Nature Communications.

The paper demonstrates that the ZNF gene family encodes repressors -- proteins that hold in check the activity of genes -- to suppress the launch of puberty. The researchers' fresh insights better position scientists to decipher whether environmental factors push the start of puberty to younger ages. Early puberty is associated with an increased incidence of ovarian, uterine and breast cancer as well as an increased incidence of cardiovascular disease and metabolic diseases.

"Deepening our understanding of how the brain controls the initiation of puberty will allow us to understand why girls are initiating puberty at much earlier ages. This knowledge may help build a foundation for developing new avenues to treat precocious puberty," said Alejandro Lomniczi, Ph.D., lead researcher on the study and assistant scientist in neuroscience at the Oregon National Primate Research Center at OHSU. "Our suspicion is that chemical substances contained in man-made products and other environmental factors, such as nutrition, may accelerate reproductive development by epigenetically antagonizing gene repressors such as ZNFs".

ZNFs exert their inhibitory effect by setting in motion mechanisms that modify gene activity without changing the sequence of DNA. Because of this, the ZNFs are considered to act "epigenetically," that means by conveying to genes information from the environment without changing the genetic code itself.

The researchers found that the abundance of the messenger RNAs encoding GATAD1 and ZNF573, along with that of five other ZNFs, decreases during the juvenile-pubertal transition in nonhuman primates, when the brake on the hypothalamic drive to the pituitary-gonadal axis is released. ZNFs promote the loss of a DNA-associated protein known as 'histone 3 dimethylated at lysine 4' (H3K4me2) from the controlling region of genes that facilitate puberty. H3K4me2 is normally associated with gene activation. Using a gene therapy paradigm and a rodent model, the researchers selectively increased the abundance of GATAD1 or ZNF573 in the hypothalamus of prepubertal female rats and observed that puberty was delayed in these animals. Altogether their findings suggest that as the production of ZNFs decreases in the hypothalamus during late prepubertal development, the "brake" keeping puberty in check is released and sexual maturity begins.
The authors of the paper 'Epigenetic regulation of puberty via Zinc-finger protein-mediated transcriptional repression,' include: Lomniczi, Sergio Ojeda, D.V.M., senior scientist in neuroscience, Hollis Wright, Ph.D., staff scientist in neuroscience, Carlos A Toro, Ph.D., postdoctoral fellow in neuroscience, and Valerie Matagne, staff scientist in neuroscience, all of the Oregon National Primate Research Center, OHSU; Juan Manuel Castellano, Ph.D., postdoctoral fellow in neuroscience, Oregon National Primate Research Center, OHSU, and Department of Cell Biology, Physiology and Immunology, University of Cordoba, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia (HURS); Suresh Ramaswamy, Ph. D, research assistant professor of OB/GYN and reproductive sciences, University of Pittsburgh School of Medicine; and Tony M. Plant, Ph.D, professor of OB/GYN and reproductive sciences, University of Pittsburgh School of Medicine.

This study was supported by grants from the NIH (5RO1 HD013254, U54 HD008610), the U.S. National Science Foundation (NSF: IOS1121691), the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 273034, NIH Training grant T32 HD007133, and NIH Training grant T32 DK00768023.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon's only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children's Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university's social mission. OHSU's Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer's disease and new treatments for Parkinson's disease, multiple sclerosis and stroke. OHSU's Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.


One of seven NIH-supported National Primate Research Centers, the Oregon National Primate Research Center houses more than 30 world-class research programs dedicated to developing research breakthroughs that will lead to cures for human disease and improve patients' quality of life. Its programs span a number of important public health issues, including aging, AIDS, depression, infectious disease, substance abuse, obesity, reproductive health and stem cells. The Center's emphasis on collaborative and clinical translational research helps bring the most advanced ideas into clinical testing. The Center is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International.

Oregon Health & Science University

Related Puberty Articles:

Puberty hormones trigger changes in youthful learning
A University of California, Berkeley, study of mice reveals, for the first time, how puberty hormones might impede some aspects of flexible youthful learning.
Study identifies hundreds of genes that influence timing of puberty
The largest genomic analysis of puberty timing in men and women conducted to date has identified 389 genetic signals associated with puberty timing, four times the number that were previously known.
Pyrethroid pesticide exposure appears to speed puberty in boys
Environmental exposure to common pesticides may cause boys to reach sexual maturity earlier, researchers have found.
Abuse accelerates puberty in children
While it has long been known that maltreatment can affect a child's psychological development, new Penn State research indicates that the stress of abuse can impact the physical growth and maturation of adolescents as well.
New study finds girls feel unprepared for puberty
Girls from low-income families in the US are unprepared for puberty and have largely negative experiences of this transition.
School attendance improves when girls are given free sanitary pads and puberty lessons
A new paper shows there is now good evidence from a large-scale study to show puberty lessons and free sanitary products improve school attendance of girls and women.
Social behavior of male mice needs estrogen receptor activation in brain region at puberty
A team of researchers led by Dr. Sonoko Ogawa at Tsukuba University revealed that expression of an estrogen receptor (ERĪ±) in the medial amygdala (MeA) of the limbic system during puberty is essential for the testosterone-regulated expression of adult male social behaviors.
Danish researchers identify possible link between the environment and puberty
Danish researchers have discovered a possible epigenetic link between the environment and pubertal timing.
Pubertal timing strongly influences men's sexual and reproductive health
A new study from Rigshospitalet and EDMaRC finds a strong association between late onset of puberty and subsequent semen quality.
Obesity and gestational diabetes in mothers linked to early onset of puberty in daughters
aughters of overweight mothers who develop gestational diabetes are significantly more likely to experience an earlier onset of one sign of puberty, according to new Kaiser Permanente research published in the American Journal of Epidemiology.

Related Puberty Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...