Nav: Home

How brain architecture leads to abstract thought

December 16, 2015

AMHERST, Mass - Using 20 years of functional magnetic resonance imaging (fMRI) data from tens of thousands of brain imaging experiments, computational neuroscientists Hava Siegelmann and a postdoctoral colleague at the University of Massachusetts have created a geometry-based method for massive data analysis to reach a new understanding of how thought arises from brain structure.

The authors say their work paves the way for advances in the identification and treatment of brain disease, as well as in deep learning artificial intelligence (AI) systems. Details appear in the current issue of Nature Scientific Reports.

As Siegelmann explains, fMRI detects changes in neural blood flow allowing researchers to relate brain activity with a cognitive behavior such as talking. She says, "The fMRI-based research did a wonderful job relating specific brain areas with activities. But no one ever tied together the tens of thousands of experiments performed over decades to show how the physical brain could give rise to abstract thought."

She and colleagues found that cognitive function and abstract thought exist as an agglomeration of many cortical sources ranging from those close to sensory cortices to far deeper from them along the brain connectome, or connection wiring diagram. Siegelmann is director of the Biologically Inspired Neural and Dynamical Systems Laboratory at UMass Amherst and one of 16 recipients in 2015 of the National Science Foundation's (NSF) Brain Research through Advancing Innovative Neurotechnologies (BRAIN) program initiated by President Obama to advance understanding of the brain.

The authors say their work demonstrates not only the basic operational paradigm of cognition, but shows that all cognitive behaviors exist on a hierarchy, starting with the most tangible behaviors such as finger tapping or pain, then to consciousness and extending to the most abstract thoughts and activities such as naming. This hierarchy of abstraction is related to the connectome structure of the whole human brain, they add.

For this study, the researchers took a data-science approach. They first defined a physiological directed network of the whole brain, starting at input areas and labeling each brain area with the distance or "depth" from sensory inputs. They then processed the massive repository of fMRI data. "The idea was to project the active regions for a cognitive behavior onto the network depth and describe that cognitive behavior in terms of its depth distribution," says Siegelmann. "We momentarily thought our research failed when we saw that each cognitive behavior showed activity through many network depths. Then we realized that cognition is far richer, it wasn't the simple hierarchy that everyone was looking for. So, we developed our geometrical 'slope' algorithm."

To illustrate, she suggests imagining a balance where the right pan holds total brain activity with the shallowest depth; the other pan holds activity in deepest brain areas most removed from inputs. If the balance arm describes the total brain activity for a particular cognitive behavior, the right pan will be lower, creating a negative slope, when most activity is in shallow areas, and the left pan will go lower when most activity is deeper, creating a positive slope. The balance arm's slope describes the relative shallow-to-deep brain activity for any behavior.

"Our geometric algorithm works on this principle, but instead of two pans, it has many," she says. The researchers summed all neural activity for a given behavior over all related fMRI experiments, then analyzed it using the slope algorithm. "With a slope identifier, behaviors could now be ordered by their relative depth activity with no human intervention or bias," she adds. They ranked slopes for all cognitive behaviors from the fMRI databases from negative to positive and found that they ordered from more tangible to highly abstract. An independent test of an additional 500 study participants supported the result.

Siegelmann says this work will have great impact in computer science, especially in deep learning. "Deep learning is a computational system employing a multi-layered neural net, and is at the forefront of artificial intelligence (AI) learning algorithms," she explains. "It bears similarity to the human brain in that higher layers are agglomerations of previous layers, and so provides more information in a single neuron.

But the brain's processing dynamic is far richer and less constrained because it has recurrent interconnection, sometimes called feedback loops. In current human-made deep learning networks that lack recurrent interconnections, a particular input cannot be related to other recent inputs, so they can't be used for time-series prediction, control operations, or memory."

Her lab is now creating a "massively recurrent deep learning network," she says, for a more brain-like and superior learning AI. Another interesting outcome of this research will be a new geometric data-science tool, which is likely to find widespread use in other fields where massive data is difficult to view coherently due to data overlap.

Siegelmann believes this work, supported by the Office of Naval Research, will have far-reaching effects. "Many brain disorders are implicated by non-standard processing or abnormal combination of sensory information. Currently, many brain disorders lack a clear biological identifier, and are diagnosed by symptoms, such as confusion, memory loss and depression. Our research suggests an entirely new method for analyzing brain abnormalities and is a source of new hope for developing biomarkers for more accurate and earlier diagnoses of psychiatric and neurological diseases."

University of Massachusetts at Amherst

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...