Nav: Home

UMMS scientists reveal new phase of HIV infection

December 16, 2015

WORCESTER, MA -- Researchers at the University of Massachusetts Medical School have identified a new life cycle stage in HIV infection, thanks to a novel technique they developed to take images of intact infected cells. They've shown that this phase of infection, dubbed intra-nuclear migration, by principal investigator Abraham L. Brass, MD, PhD, relies on the human protein CPSF6 to guide the virus through the host cell's nucleus and position it at active genes where it prefers to make its home. Details of HIV's intra-nuclear migration and the imaging techniques used to find it were published in Cell Reports.

"This study reveals an important stage and mechanism in HIV infection that was previously unappreciated," said Dr. Brass, assistant professor of microbiology & physiological systems. "It's important to know more about these early infection events so we can come up with ways to stop the virus from becoming part of our DNA and infecting us for life."

The key to learning about HIV's intra-nuclear migration came thanks to a new technique, ViewHIV, which was developed by Brass and his colleagues, Jill Perreira and Chris Chin, both research associates at UMMS; and Eric Feeley, a PhD candidate at Duke University. Using ViewHIV, the researchers are able to closely monitor the migration of HIV, which is made up of a protein capsule or capsid that contains the virus's DNA, as it passes through the nuclear membrane and moves around inside the nucleus. Up to this point, scientists have been unable to generate good images of HIV inside the nucleus using standard techniques. Because of this limitation, most insights into HIV's transit across the nuclear membrane have been gained through indirect molecular biology and biochemistry methods that evaluate large cell populations.

"There are certain characteristics of a virus you can only learn about by keeping it intact and seeing it in action in single cells," said Perreira, a co-lead author on the study. "Researchers have been studying HIV for 30 years, but we still didn't have a really good way to look inside infected cells. We thought that if we could just see what's going on, then we could get a better idea of what the virus is doing and how to stop it."

To take a look inside HIV-nfected cells, the team developed ViewHIV. Adapted from existing technologies, ViewHIV is capable of generating images of both the viral genome and protein capsid simultaneously inside an infected host cell. ViewHIV pairs a very sensitive type of fluorescence in situ hybridization (FISH) with a monoclonal antibody that binds to the viral capsid. The key, according to Brass, was using a protease in preparing the samples. This allowed the capsid, tagged with a fluorescent antibody, to be seen in the images of the nucleus.

This technique allows scientists to visualize the movement and fate of the viral capsid, DNA and RNA inside the cell. Standard confocal microscopy is then used to take both horizontal and vertical photos of the cell that are re-assembled into detailed three-dimensional images of the cell.

Perreira and Chin, using the images produced by ViewHIV, were able to track the virus and its capsid as it moved through the cytoplasm, across the nuclear membrane and finally into the nucleus where it permanently integrates into the host cell's DNA. By knocking down certain host proteins, the researchers were able to observe what impact these proteins had on the virus' ability to enter the nucleus and integrate into the host genome.

They found that the viral capsid played an important role in the virus's ability to enter and navigate through the nucleus. Many studies hypothesized that HIV shed it protein capsid before it enters the nuclear pore complex. Brass's images clearly show that a portion of the capsid is still present and associated with the viral DNA after nuclear entry, with the final shedding of capsid occurring when the virus reaches its final destination. Further investigation showed that it is the capsid's use of the host proteinsCPSF6 and TNPO3 that allow it to enter and navigate through the nucleus. Without this help, the virus gets stranded outside or at the edge of the nucleus.

The CPSF6 protein normally works to modify the cell's newly made messenger RNAs and its goal is to find active genes once it gets into the nucleus. Brass's study shows that when a cell is infected with HIV, the virus takes advantage of CPSF6 by hitching a ride on the protein, which is ferried across the nuclear membrane by the nuclear importer, TNPO3. Once inside the nucleus, HIV--because it's bound to CPSF6 --is carried to active gene areas where it prefers to integrate. In the absence of TNPO3, the virus is unable to cross the nuclear membrane. And without CPSF6, it is unable to find the active gene regions that it prefers for integration. Instead it integrates into less active regions.

These findings point to a previously undescribed state in HIV's life cycle taking place between the time the virus enters the nucleus and the time its DNA is integrated into our genome, which was only discovered thanks to the development of ViewHIV.

"We believe ViewHIV is going to be a great tool for unlocking the mechanisms that govern the early state of HIV's life cycle," said Brass. "With our technique we can better determine how HIV establishes itself into our DNA and develop new ways to stop that from happening."
-end-


University of Massachusetts Medical School

Related Hiv Articles:

The Lancet HIV: Severe anti-LGBT legislations associated with lower testing and awareness of HIV in African countries
This first systematic review to investigate HIV testing, treatment and viral suppression in men who have sex with men in Africa finds that among the most recent studies (conducted after 2011) only half of men have been tested for HIV in the past 12 months.
The Lancet HIV: Tenfold increase in number of adolescents on HIV treatment in South Africa since 2010, but many still untreated
A new study of more than 700,000 one to 19-year olds being treated for HIV infection suggests a ten-fold increase in the number of adolescents aged 15 to 19 receiving HIV treatment in South Africa, according to results published in The Lancet HIV journal.
Starting HIV treatment in ERs may be key to ending HIV spread worldwide
In a follow-up study conducted in South Africa, Johns Hopkins Medicine researchers say they have evidence that hospital emergency departments (EDs) worldwide may be key strategic settings for curbing the spread of HIV infections in hard-to-reach populations if the EDs jump-start treatment and case management as well as diagnosis of the disease.
NIH HIV experts prioritize research to achieve sustained ART-free HIV remission
Achieving sustained remission of HIV without life-long antiretroviral therapy (ART) is a top HIV research priority, according to a new commentary in JAMA by experts at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
First ever living donor HIV-to-HIV kidney transplant
For the first time, a person living with HIV has donated a kidney to a transplant recipient also living with HIV.
The Lancet HIV: PrEP implementation is associated with a rapid decline in new HIV infections
Study from Australia is the first to evaluate a population-level roll-out of pre-exposure prophylaxis (PrEP) in men who have sex with men.
Researchers date 'hibernating' HIV strains, advancing BC's leadership in HIV cure research
Researchers have developed a novel way for dating 'hibernating' HIV strains, in an advancement for HIV cure research.
HIV RNA expression inhibitors may restore immune function in HIV-infected individuals
Immune activation and inflammation persist in the majority of treated HIV-infected individuals and is associated with excess risk of mortality and morbidity.
HIV vaccine elicits antibodies in animals that neutralize dozens of HIV strains
An experimental vaccine regimen based on the structure of a vulnerable site on HIV elicited antibodies in mice, guinea pigs and monkeys that neutralize dozens of HIV strains from around the world.
State-of-the-art HIV drug could curb HIV transmission, improve survival in India
An HIV treatment regimen already widely used in North America and Europe would likely increase the life expectancy of people living with HIV in India by nearly three years and reduce the number of new HIV infections by 23 percent with minimal impact on the country's HIV/AIDS budget.
More Hiv News and Hiv Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.