Nav: Home

USC researchers discover way to improve image sharpness for blind people with retinal implants

December 16, 2015

LOS ANGELES -- Retinal implants that deliver longer pulses of electrical current may noticeably improve image sharpness for individuals who have lost their sight due to retinitis pigmentosa, according to a new study by researchers from the USC Eye Institute and USC Viterbi School of Engineering.

The research will be published in the peer-reviewed journal Science Translational Medicine online on Dec. 16, 2015.

Retinitis pigmentosa (RP) is an inherited disease of the eye that causes blindness through gradual degeneration of photoreceptors, the light-sensing cells in the retina. The disease affects about one in 4,000 people.

Retinal implants (artificial retinas) give people with RP the ability to perceive light, using a system that includes a video camera mounted on a pair of eyeglasses, a video processing unit that transforms images from the camera into wirelessly transmitted electronic signals, and an implanted array of electrodes to stimulate visual neurons.

Retinal implants have enabled blind individuals to detect motion and locate large objects. However, because the implants may unintentionally stimulate axons in the retina, patients sometimes see large oblong shapes of light that reduce the quality of their vision. In order for patients to see more clearly, the images created by the implant should be composed of focal spots of light.

Current implant technology stimulates the retina with brief pulses of electrical current roughly 0.5 millisecond (ms) in duration. The researchers found that increasing the duration of the stimulus pulses allows visualization of distinct focal spots of light.

"This is a huge step forward in helping restore sight for people with retinitis pigmentosa," said Andrew Weitz, PhD, assistant professor of research ophthalmology. "Being able to create focused spots of light is important. Think of each light spot as a pixel in an image. By arranging many light spots into the shape of an object, we can generate sharp images of that object. For those of us who wear glasses, imagine the difference between trying to read a distant neon sign with and without your glasses on. For people with retinal implants, being able to see more clearly should have a big impact on their ability to recognize objects and navigate their environments. These improvements in vision can really boost a person's sense of independence and confidence."

The researchers tested various stimulus pulse durations in an animal model and validated their findings in a patient with an early version of the Argus retinal implant (Second Sight Medical Products, Inc.). The results indicated that longer pulse durations allowed the retina to be stimulated more precisely. In the animal model, all pulses 8 ms and shorter activated axons, obscuring the ability to generate a focal spot of light. Sixteen-millisecond pulses also stimulated axons but to a much lesser extent. Pulses 25 ms and longer produced no evidence of axonal stimulation, instead resulting in focal spots of light.

"Our findings further support that it is possible for patients with RP to see forms using artificial vision," said James Weiland, PhD, professor of ophthalmology and biomedical engineering. "This makes a strong case for developing high-resolution retinal implants."
-end-
This research was conducted through a partnership between the USC Eye Institute and USC's schools of medicine and engineering: the Viterbi School of Engineering Department of Biomedical Engineering and Ming Hsieh Department of Electrical Engineering; Keck School of Medicine's Departments of Ophthalmology, and of Physiology and Biophysics; and device manufacturer Second Sight Medical Products Inc., in Sylmar, CA.

Researchers who contributed to the study include: Andrew C. Weitz (Department of Ophthalmology, Department of Biomedical Engineering); Devyani Nanduri (Department of Biomedical Engineering); Matthew R. Behrend (Ming Hsieh Department of Electrical Engineering); Alejandra Gonzalez-Calle (Department of Biomedical Engineering); Robert J. Greenberg (Second Sight Medical Products Inc.,); Mark S. Humayun (Department of Ophthalmology, Department of Biomedical Engineering); Robert H. Chow (Department of Physiology and Biophysics, Department of Biomedical Engineering); and James D. Weiland (Department of Ophthalmology, Department of Biomedical Engineering).

About the USC Eye Institute

The USC Eye Institute, part of the Keck Medicine of USC university-based medical enterprise, has been a leader in scientific research and innovative clinical treatments for 40 years. Among the top three funded academic-based medical centers by the National Eye Institute (NEI) research grants and ranked in the Top 10 ophthalmology departments in U.S. News & World Report's annual 'Best Hospitals' issue for 21 years, the USC Eye Institute is headquartered in Los Angeles with clinics in Arcadia, Beverly Hills, downtown Los Angeles and Pasadena.

Patients from across the country come to see the USC Eye Institute experts who treat a vast array of eye diseases across the life spectrum from infants to aging seniors. The USC Eye Institute is known for its scientific research and clinical innovation including: creation of the Argus implant for Retinitis pigmentosa patients (known as the "bionic eye"); stem cell research for AMD patients; discovery of the gene that is the cause of the most common eye cancer in children; treatment for eye infections for AIDS patients; inventors of the most widely used glaucoma implant in the world; pioneers of a device for long-term intraocular drug delivery; and the first to use telesurgery to train eye doctors in developing countries. For more information visit: eye.keckmedicine.org.

About USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm now key to cell phone technology and numerous data applications. Consistently ranked among the top graduate programs in the world, the school enrolls more than 6,500 undergraduate and graduate students, taught by 180 tenured and tenure-track faculty, with 73 endowed chairs and professorships. http://viterbi.usc.edu/

University of Southern California - Health Sciences

Related Retinitis Pigmentosa Articles:

Gene mutation linked to retinitis pigmentosa in Southwestern US Hispanic families
Thirty-six percent of Hispanic families in the U.S. with a common form of retinitis pigmentosa got the disease because they carry a mutation of the arrestin-1 gene, according to a new study from researchers at The University of Texas Health Science Center at Houston (UTHealth) School of Public Health.
Using CRISPR to reverse retinitis pigmentosa and restore visual function
Using the gene-editing tool CRISPR/Cas9, researchers at University of California San Diego School of Medicine and Shiley Eye Institute at UC San Diego Health, with colleagues in China, have reprogrammed mutated rod photoreceptors to become functioning cone photoreceptors, reversing cellular degeneration and restoring visual function in two mouse models of retinitis pigmentosa.
Volker Busskamp receives prize for application-oriented neurobiological research
The young researcher has been awarded for his contribution to a gene therapy approach to treat retinitis pigmentosa and for the development of artificial neuronal circuits.
Improving the view on the genetic causes of retinitis pigmentosa
Scientists have discovered that mutations in REEP6 -- a gene that until now had not been associated with a human disease -- can explain some of the cases of retinitis pigmentosa that lacked a genetic diagnosis.
Retinitis pigmentosa may be treated by reprogramming sugar metabolism
Columbia University researchers slowed vision loss in mice with a form of retinitis pigmentosa by reprogramming the metabolism of photoreceptors in the retina.
After blindness, the adult brain can learn to see again
More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration.
Visual pigment rhodopsin forms two-molecule complexes in vivo
Researchers at Baylor College of Medicine, the University of Utah and the Johns Hopkins University School of Medicine have determined for the first time the most likely configuration of rhodopsin in a living organism, and hope this discovery will help develop future therapies for retinitis pigmentosa, a degenerative eye disease for which there is no known cure.
CRISPR used to repair blindness-causing genetic defect in patient-derived stem cells
Scientists have used a new gene-editing technology called CRISPR, to repair a genetic mutation responsible for retinitis pigmentosa (RP), an inherited condition that causes the retina to degrade and leads to blindness in at least 1.5 million cases worldwide.
Gene editing technique improves vision in rats with inherited blindness
A new technique that has the potential to treat inherited diseases by removing genetic defects has been shown for the first time to hinder retinal degeneration in rats with a type of inherited blindness, according to a Cedars-Sinai study.
USC researchers discover way to improve image sharpness for blind people with retinal implants
Retinal implants that deliver longer impulses may markedly improve image sharpness for blind individuals.

Related Retinitis Pigmentosa Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...