Nav: Home

Vessel discovery a major step toward growing kidneys

December 16, 2015

In a significant step toward growing replacement kidneys, researchers at the University of Virginia School of Medicine have identified the cells that give rise to the blood vessels within the kidney. It's a discovery of critical importance, as efforts to grow kidneys have long been frustrated by the inability to create the vasculature necessary for a functional organ.

The researchers also made the surprising finding that when the vessels are created, so is the blood that fills them. Until now, scientists had not known that the kidney was a blood-generating organ. Blood generation occurs within the kidney in fish, but this is a notable discovery in mammals.

Obstacles to Growing Kidneys

Researchers have long been able to grow kidney tissue in a lab dish, successfully forming various components of the organ. But they have been unable to create the vessels that carry life-giving blood. Without that, there's no hope of creating a functional organ. But by identifying the stem cells that develop into the vessels, UVA's Maria Luisa S. Sequeira-Lopez, MD, and her team have given scientists a target to manipulate so that one day they may be able to grow complete organs. By understanding the natural development of the vessels, they can seek to reproduce and control it.

"We are very interested in knowing how the kidney vasculature develops. It's crucial. You cannot have a kidney without its vasculature," said Sequeira-Lopez, of the Department of Pediatrics and UVA's Child Health Research Center. "It's very easy to grow in culture the tubular part of the kidney but not the vessels. This will be key, will be crucial, if we are thinking of replacement therapy or making a functioning kidney in the future from cells from a patient. If we don't understand how the normal vasculature develops, we cannot reproduce or force cells to make it."

Sequeira-Lopez previously identified the cells that form the outer layer of the vessels; in her new discovery, she and her team identify the cells that form the inner layer. In addition, researcher Yan Hu noted, they identified an important molecule that regulates the development of the kidney vasculature.

"We finally found the precursor to these cells, so the next step is to determine the controllers," said Hu, a graduate student.

Blood Formation in the Kidney

As they were doing their work, Sequeira-Lopez and Hu noted something very unusual about the formation of the vessels in the kidney: As they formed, so did the blood they contained.

"A characteristic of this new precursor that we found is that it can also make blood cells. It not only makes the endothelial layer, the inner layer of the vessel, but it makes blood," Sequeira-Lopez said. "So at the time you make a new blood vessel, it's not that it's empty, but it has its content in it - the blood cells are inside."

Hu noted how surprising this discovery was: "Rarely do researchers find this phenomenon in organs, and for the first time we identify this phenomenon in the developing kidney," she said.

Findings Published

The findings have been published online by the Journal of the American Society of Nephrology. The article was written by Hu, Minghong Li, Joachim R. Göthert, R. Ariel Gomez and Sequeira-Lopez.
-end-


University of Virginia Health System

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...