Nav: Home

Vessel discovery a major step toward growing kidneys

December 16, 2015

In a significant step toward growing replacement kidneys, researchers at the University of Virginia School of Medicine have identified the cells that give rise to the blood vessels within the kidney. It's a discovery of critical importance, as efforts to grow kidneys have long been frustrated by the inability to create the vasculature necessary for a functional organ.

The researchers also made the surprising finding that when the vessels are created, so is the blood that fills them. Until now, scientists had not known that the kidney was a blood-generating organ. Blood generation occurs within the kidney in fish, but this is a notable discovery in mammals.

Obstacles to Growing Kidneys

Researchers have long been able to grow kidney tissue in a lab dish, successfully forming various components of the organ. But they have been unable to create the vessels that carry life-giving blood. Without that, there's no hope of creating a functional organ. But by identifying the stem cells that develop into the vessels, UVA's Maria Luisa S. Sequeira-Lopez, MD, and her team have given scientists a target to manipulate so that one day they may be able to grow complete organs. By understanding the natural development of the vessels, they can seek to reproduce and control it.

"We are very interested in knowing how the kidney vasculature develops. It's crucial. You cannot have a kidney without its vasculature," said Sequeira-Lopez, of the Department of Pediatrics and UVA's Child Health Research Center. "It's very easy to grow in culture the tubular part of the kidney but not the vessels. This will be key, will be crucial, if we are thinking of replacement therapy or making a functioning kidney in the future from cells from a patient. If we don't understand how the normal vasculature develops, we cannot reproduce or force cells to make it."

Sequeira-Lopez previously identified the cells that form the outer layer of the vessels; in her new discovery, she and her team identify the cells that form the inner layer. In addition, researcher Yan Hu noted, they identified an important molecule that regulates the development of the kidney vasculature.

"We finally found the precursor to these cells, so the next step is to determine the controllers," said Hu, a graduate student.

Blood Formation in the Kidney

As they were doing their work, Sequeira-Lopez and Hu noted something very unusual about the formation of the vessels in the kidney: As they formed, so did the blood they contained.

"A characteristic of this new precursor that we found is that it can also make blood cells. It not only makes the endothelial layer, the inner layer of the vessel, but it makes blood," Sequeira-Lopez said. "So at the time you make a new blood vessel, it's not that it's empty, but it has its content in it - the blood cells are inside."

Hu noted how surprising this discovery was: "Rarely do researchers find this phenomenon in organs, and for the first time we identify this phenomenon in the developing kidney," she said.

Findings Published

The findings have been published online by the Journal of the American Society of Nephrology. The article was written by Hu, Minghong Li, Joachim R. Göthert, R. Ariel Gomez and Sequeira-Lopez.
-end-


University of Virginia Health System

Related Blood Vessels Articles:

When blood vessels are overly permeable
In Germany alone there are around 400,000 patients who suffer from chronic inflammatory bowel diseases.
Nicotine-free e-cigarettes can damage blood vessels
A Penn study reveals single instance of vaping immediately leads to reduced vascular function.
Creating blood vessels on demand
Researchers discover new cell population that can help in regenerative processes.
Self-sustaining, bioengineered blood vessels could replace damaged vessels in patients
A research team has bioengineered blood vessels that safely and effectively integrated into the native circulatory systems of 60 patients with end-stage kidney failure over a four-year phase 2 clinical trial.
Found: the missing ingredient to grow blood vessels
Researchers have discovered an ingredient vital for proper blood vessel formation that explains why numerous promising treatments have failed.
How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.
Like a zipper -- how cells form new blood vessels
Blood vessel formation relies on the ability of vascular cells to move while remaining firmly connected to each other.
Blood vessels instruct brain development
The group of Amparo Acker-Palmer (Buchmann Institute of Molecular Life Sciences and the Institute of Cell Biology and Neuroscience, Goethe University) reported in a Research Article in the last issue of the journal Science a novel function of blood vessels in orchestrating the proper development of neuronal cellular networks in the brain.
Texas A&M team develops new way to grow blood vessels
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants.
Novel antioxidant makes old blood vessels seem young again
Older adults who take an antioxidant that specifically targets mitochondria see age-related changes in blood vessels reverse by the equivalent of 15 to 20 years within six weeks, a new study shows.
More Blood Vessels News and Blood Vessels Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.