New diagnostic test kit offers easy identification of virulent pathogens in remote locations

December 16, 2016

Washington, DC - Dec. 16, 2016 - A team of researchers has developed a portable detection system that can rapidly identify some of the most virulent, often multi-drug resistant pathogens. This device was designed to be used in places where laboratory resources are lacking, such as isolated villages in developing countries. The research is published December 16th in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

Microbial infections afflict approximately1.5 billion people annually, killing roughly 4.6 million, most of that toll in the developing world. The lack of diagnostic facilities in remote locations prevents timely identification of pathogens. That frequently forces caregivers to guess when diagnosing and treating microbial infections. Under these circumstances, treatment is less likely to be effective. For example, when an infection's cause can't be identified with certainty, caregivers frequently use broad spectrum antibiotics to boost the probability of killing the pathogen. Unfortunately, as compared to precisely targeted antibiotics, the use of broad spectrum antibiotics increases the likelihood of spreading antimicrobial resistance genes, said first author Lars D. Renner, PhD, Group Leader at the Leibniz Institute of Polymer Research, and the Max Bergmann Center of Biomaterials, Dresden, Germany.

The new battery powered detection system is small and simple. Sixteen microchambers each contain a genetic sequence from one of the sixteen pathogens the device is designed to detect. When one of these sequences matches a sequence from a patient sample, a fluorescent light illuminates from within the relevant microchamber. Then, an app detects the position of that chamber, and identifies the pathogen according to that position. This very sensitive assay can provide positive identification with patient samples containing as few as 10 DNA sequences.

The investigators picked the sequences the device uses by screening the genomes of the relevant bacteria for unique genetic sequences. Pathogens can be identified using single drops of patient samples from blood, urine, or other bodily fluids, said Renner.

The system can identify Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and various species of the genus, Enterobacter.

Applications for the technology, besides healthcare, include a variety of areas where it is necessary to identify environmental bacteria--"food security, agriculture, water quality, and industrial processing and manufacturing," said Renner.
The research received financing from the Bill and Melinda Gates Foundation, as an effort to bring better healthcare to underserved, remote areas, and to help stem the spread of antimicrobial resistance. The Department of Defense also provided financing, as such diagnostics could help protect soldiers fighting in remote locations, said coauthor Douglas Weibel, PhD, Professor of Biomedical Engineering, University of Wisconsin, Madison. Several of the authors have formed a company to build the device for North American markets, and to provide it at cost in the developing world.

The American Society for Microbiology is the largest single life science society, composed of over 48,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Pathogens Articles from Brightsurf:

Pathogens in the mouth induce oral cancer
Pathogens found in tissues that surround the teeth contribute to a highly aggressive type of oral cancer, according to a study published 1st October in the open-access journal PLOS Pathogens by Yvonne Kapila of the University of California, San Francisco, and colleagues.

A titanate nanowire mask that can eliminate pathogens
Researchers in Lásló Forró's lab at EPFL, Switzerland, are working on a membrane made of titanium oxide nanowires, similar in appearance to filter paper but with antibacterial and antiviral properties.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

The Parkinson's disease gut has an overabundance of opportunistic pathogens
In 2003, Heiko Braak proposed that Parkinson's disease is caused by a pathogen in the gut that could pass through the intestinal mucosal barrier and spread to the brain through the nervous system.

Crop pathogens 'remarkably adaptable'
Pathogens that attack agricultural crops show remarkable adaptability to new climates and new plant hosts, new research shows.

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.

Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.

Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.

Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.

Read More: Pathogens News and Pathogens Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to