Nav: Home

Many muons: Imaging the underground with help from the cosmos

December 16, 2016

Alain Bonneville, a geophysicist at Pacific Northwest National Laboratory, will present details on the muon detector and the comparative field tests at the American Geophysical Union Fall Meeting in San Francisco. His talk is Thursday, December 15, 2016 at 5:40 p.m. in Moscone South, Room 307.

Borehole muon detector advances imaging and monitoring of CO2 storage sites

Muons, once used to explore the inside of pyramids and volcanoes alike, are enabling researchers to see deep underground with a technological breakthrough from PNNL.

Invisible to the naked eye, muons are elementary particles created by the collisions of cosmic rays with molecules in the atmosphere. Muons are constantly raining down on the earth at various angles. They can pass through materials, such as earth and rock, and detecting these particles have helped researchers "see" the inside of structures such as the pyramids of Giza. But the detectors -- which measure the number and trajectories of muons hitting the detector -- are rather large, about the size of a small car.

In order to be able to "see" changes in density underground, the detectors need to be much smaller. PNNL researchers and their partners have created a smaller -- just six inches in diameter and about three feet long -- and more rugged version. This mini detector will be able to go thousands of feet underground via horizontal boreholes.

The borehole-sized detectors are made out of plastic components and optical fibers that carry signals to electronics to count each muon that passes through the device. This summer, researchers tested its output against two existing large detectors in a tunnel at Los Alamos National Laboratory. The results were the same as the larger machines developed by LANL and Sandia National Laboratories. Like its big brothers, the small detector can measure anomalies in the flux of muons that pass through. A change in the number of muons hitting the detector during a certain period and space indicate a change in density within the structure or object -- for instance a plume or reservoir of carbon dioxide underground.

The data convert to an image and both could help monitor CO2 movement or leakage underground at a sequestration site, and have applications for a wide variety of subsurface imaging.
-end-
Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

DOE/Pacific Northwest National Laboratory

Related Muons Articles:

Breakthrough made towards building the world's most powerful particle accelerator
An international team of researchers, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has for the first time succeeded in demonstrating the ionization cooling of muons.
Tracking down the mystery of matter
Researchers at the Paul Scherrer Institute PSI have measured a property of the neutron more precisely than ever before.
Researchers perfect nanoscience tool for studies of nuclear waste storage
Studying radiation chemistry and electronic structure of materials at scales smaller than nanometres, the University of Guelph team prepared samples of clay in ultra-thin layers.
Matthias Schott receives ERC Consolidator Grant for new approach to search for axions
Matthias Schott and his team are proposing a detailed research program using the LHC's ATLAS Experiment where they can undertake a targeted search for relatively heavy ALPs, which, once found, could solve the problem associated with the anomalous magnetic moment of the muon.
GRAPES-3 muon telescope discovers record 1.3 gigavolt potential in a thundercloud
By muon imaging the GRAPES-3 collaboration showed huge voltages develop in supercharged thunderstorms and reported a voltage of 1.3GV on Dec.
Scientists discover new quantum spin liquid
An international research team led by the University of Liverpool and McMaster University has made a significant breakthrough in the search for new states of matter.
Did supernovae kill off large ocean animals at dawn of Pleistocene?
The effects of a supernova -- and possibly more than one -- on large ocean life like school-bus-sized Megalodon 2.6 million years ago are detailed in a paper just published in Astrobiology.
COSINE-100 experiment investigates dark matter mystery
Yale scientists are part of a new international experiment that challenges previous claims about the detection of non-luminous dark matter.
Borexino sheds light on solar neutrinos
For more than ten years, the Borexino Detector located 1,400 meters below surface of the Italian Gran Sasso massif has been exploring the interior of our Sun.
Tracking hydrogen movement using subatomic particles
A Japanese collaboration developed a technique using a beam of subatomic particles called muons to track hydrogen movement in the solid magnesium hydride for the first time.
More Muons News and Muons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.