Nav: Home

Dr. Sakamoto explains signaling pathways in the pathogenesis of diamond blackfan anemia

December 16, 2016

Diamond Blackfan Anemia (DBA) is a condition that is characterized by a failure of the bone marrow to produce red blood cells, congenital abnormalities, and a predisposition to cancer. Current treatment options, including steroid treatments and chronic transfusions, can lead to significant morbidity. Therefore, investigation into molecular mechanisms that drive DBA is critical to saving the lives of patients suffering from this disease.

DBA is caused by a deficiency of some ribosomal proteins to properly process pre-ribosomal ribonucleic acid (RNA), which is ultimately important for the translation of the genome into functional proteins. While it is known that p53, an important DNA repair protein, mediates many facets of DBA, its mechanism has not, until now, been well understood. With support from a Bone Marrow Failure Research Program FY12 Idea Award, Dr. Kathleen Sakamoto and her team at Stanford University has identified that a deficiency in RPS19, the most commonly mutated ribosomal protein in DBA patients, leads to the upregulation and activation of the p53 pathway. Furthermore, they have identified that a target of p53, microRNA34A, is responsible for decreased red blood cell formation.

In a recently published article in Disease Models & Mechanisms, Dr. Sakamoto's team used a zebrafish model of DBA with RPS19 and RPL11 insufficiency to further characterize the link between defects in ribosome biogenesis, nucleotide metabolism, and the p53 pathway in DBA. The RPS19-deficient zebrafish showed a decrease in proliferation, enhanced activation of the ATR/ATM-CHK1/CHK2/p53 DNA damage pathway, an imbalanced pool of nucleotides, ATP depletion, and AMPK activation. These findings are all hallmarks of cellular energy crisis,DNA replication stress, and thus enhanced DNA repair. When treating zebrafish with exogenous nucleosides, a decrease in the activation of p53 and AMPK was observed. As blood cells are highly dependent on salvage pathways for the production of nucleotides and are therefore vulnerable to a stressed metabolism, red blood cells in DBA patients may benefit from exogenous nucleosides. Nucleoside supplements are known to be very safe and are even included in many infant formulas. This form of supplementation may be beneficial, not only in patients with DBA, but also for other conditions that involve the activation of the DNA damage response, such as radiation exposure. Furthermore, treatment of the RP-deficient zebrafish with inhibitors of various cell cycle checkpoint kinases decreased p53 upregulation and apoptosis while resulting in an improvement of hematopoiesis. Therefore drugs that work to decrease DNA damage or help increase DNA repair could be effective for the treatment of DBA.

The results from this research have shed light on a previously undiscovered link between the well-studied p53 pathway and the lesser known pathways associated with ribosome biogenesis and nucleotide metabolism in DBA. Uncovering this link may provide several avenues for new treatment options for patients suffering from DBA and its current treatment regimens.
-end-


US Department of Defense Congressionally Directed Medical Research Programs

Related Bone Marrow Articles:

Researchers reveal developmental mechanisms behind rare bone marrow disorder
Myelodysplastic syndrome is an umbrella term used to describe disorders characterized by the bone marrow's inability to produce normal blood cells.
Researchers propose noninvasive method to detect bone marrow cancer
For the first time, researchers have shown that using magnetic resonance imaging can effectively identify bone marrow cancer (myelofibrosis) in an experimental model.
Bone marrow inflammation predicts leukemia risk
Cancer is generally thought to arise from genetic damage within individual cells, but recent evidence has suggested that abnormal signaling in the surrounding tissue also plays an important role.
New approach could make bone marrow transplants safer
Bone marrow transplantation is the only curative therapy for the millions of people living with blood disorders like sickle cell anemia, thalassemia, and AIDS.
Bone marrow lesions can help predict rapidly progressing joint disease
A new study from the Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, shows lesions, which can best be seen on MRI scans, could help identify individuals who are more likely to suffer from more rapidly progressing osteoarthritis.
Fat cells originating from bone marrow found in humans
Researchers at the University of Colorado Anschutz Medical Campus have found that fat cells produced by stem cells from the bone marrow may be linked to chronic illnesses like diabetes, cardiovascular disease, kidney disease and some cancers.
Zebrafish reveal drugs that may improve bone marrow transplant
Using large-scale zebrafish drug-screening models, researchers at Boston Children's Hospital have identified a potent group of chemicals that helps bone marrow transplants engraft or 'take.'
The secrets of bone marrow: What leads to healthy blood cell production?
The Medical College of Wisconsin has received a five-year, $635,000 grant from the National Institutes of Health's National Heart, Lung and Blood Institute to identify new potential treatments for diseases that inhibit the growth of blood cells and diseases in which the blood cells develop abnormally.
Clinical trial uses patients' own cells for treatment after bone marrow transplant
A clinical trial using personalized cellular therapy has begun enrolling children and adults suffering from graft-versus-host-disease, a life-threatening complication of bone marrow transplantation in which donor immune lymphocytes attack the organs of the bone marrow transplant recipient.
3-D engineered bone marrow makes functioning platelets
An international research team has reported development of the first three-dimensional tissue system that reproduces the complex structure and physiology of human bone marrow and successfully generates functional human platelets.

Related Bone Marrow Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...