Nav: Home

Turning therapeutic antibodies inside-out to fight cancer

December 16, 2016

RIVERSIDE, Calif. (http://www.ucr.edu) -- Researchers at the University of California, Riverside have camels and llamas to thank for their development of a new cancer treatment that is highly selective in blocking the action of faulty matrix metalloproteinases (MMPs).

MMPs are a group of 26 closely related proteinases (enzymes that break down other proteins) that are essential in tissue regeneration and other normal cellular processes. However, when a tumor grows, certain MMPs are over-produced, allowing cancer cells to spread to other parts of the body.

In research published this week in the Proceedings of the National Academy of Sciences, Xin Ge, an assistant professor of chemical and environmental engineering in UCR's Bourns College of Engineering, and his colleagues describe the development of therapeutic monoclonal antibodies that are highly selective to MMPs, meaning they can bind to a specific MMP and block its activity without affecting other MMP family members. The creation of these human antibodies was inspired by antibodies found naturally in the camelid family of animals, which includes camels and llamas.

The results could lead to new treatments--not only for a variety of cancers, but also other diseases that arise from faulty proteinases, such as Alzheimer's, asthma, multiple sclerosis and arthritis.

For more than 20 years, scientists have been developing drugs that block faulty MMPs in order to stop cancers from starting and spreading. But clinical trials on a variety of promising small molecules have failed--largely because they lack the specificity needed to target faulty MMPs while still allowing "good" MMPs to perform their regular cellular duties.

"Clinical trial failures have taught us that selective, rather than broad-based, inhibitors are required for successful MMP therapies, but achieving this selectivity with small-molecule inhibitors is exceedingly difficult because of the incredible conservation among MMP family members. As a result, broad-spectrum inhibitors have failed in clinical trials due to their low overall efficacy and side effects," Ge said.

Monoclonal antibodies, with their large and inherently more specific binding sites, have been touted as an alternative to small molecules. However, until now, scientists have struggled to develop MMP-blocking antibodies due to the incompatibility between their binding sites.

"Both human antibodies and MMPs have concave--or buried--binding sites, making interactions between them almost impossible. They simply won't stick together," Ge said.

That's why the researchers turned to the convex, looped binding sites found in camel and llama antibodies that are ideal for interactions with the concave MMP sites. The team chemically synthesized billions of variants of human antibodies with convex loops found in camelids. In testing them, they identified dozens that are highly effective at blocking MMPs and reducing the spread of cancer in laboratory models.

"While we can't use camel or llama antibodies directly in humans because they would cause an immune reaction, we essentially used them as our inspiration in the creation of human antibodies that are now promising candidates against tumor-promoting MMPs," Ge said.
-end-
In addition to Ge, contributors to this paper included Dong Hyun Nam, a postdoctoral researcher, and Carlos Rodriguez, an undergraduate researcher, both at UC Riverside, and Albert Remacle and Alex Strongin from the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, Calif. The research was supported by the National Institute of Health and a National Science Foundation Career Award to Ge.

University of California - Riverside

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.