Certain high blood pressure drugs block cancer invasion

December 16, 2016

By screening already approved drugs, the team led by Postdoctoral Researcher Guillaume Jacquemet and Academy Professor Johanna Ivaska has discovered that calcium channel blockers can efficiently stop cancer cell invasion in vitro. Calcium channel blockers are currently used to treat hypertension, also known as high blood pressure, but their potential use in blocking cancer cell metastases has not been previously reported.

Cancer kills because of its ability to spread throughout the body and form metastases. Therefore, developing drugs that block the ability of cancer cells to disseminate is a major anti-cancer therapeutic avenue. Developing new drugs, however, is a very lengthy and expensive process and many promising drugs fail clinical trials because of unanticipated toxicity and side effects. Thus, finding new targets for drugs already in use to treat other diseases, in other words drug repurposing, is an emerging area in developing anti-cancer therapies.

- Identification of anti-hypertension drugs as potential therapeutics against breast and pancreatic cancer metastasis was a big surprise. The targets of these drugs were not know to be present in cancer cells and therefore no one had considered the possibility that these drugs might be effective against aggressive cancer types, says Professor Ivaska.

Sticky finger-like structures in cancer cell enable its movement

For several years, the research team from the Turku Centre for Biotechnology lead by Professor Johanna Ivaska has focused their efforts on understanding how cancer cells move and invade surrounding tissue. The team has identified that aggressively spreading cancer cells express a protein called Myosin-10 which drives cancer cell motility.

- Myosin-10 expressing cancers have a large number of structures called filopodia. They are sticky finger-like structures the cancer cells extend to sense their environment and to navigate - imagine a walking blind spider, explains Dr Jacquemet.

The team found that calcium channel blockers target specifically these sticky fingers rendering them inactive, thus efficiently blocking cancer cell movement. This suggest that they might be effective drugs against cancer metastasis. However, at this stage much more work is required to assess if these drugs would be efficient against cancer progression.

The team and their collaborators are currently assessing the efficiency of calcium channel blockers to stop the spreading of breast and pancreatic cancer using pre-clinical models and analysing patient data.

The findings were published in Nature Communications journal on 2 December 2016.
-end-
Original publication: L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Jacquemet G, Baghirov H, Georgiadou M, Sihto H, Peuhu E, Cettour-Janet P, He T, Perälä M, Kronqvist P, Joensuu H, Ivaska J. Nat Commun. 2016 Dec 2;7:13297. doi: 10.1038/ncomms13297.

Link to publication: http://www.nature.com/articles/ncomms13297

Download a high resolution microscope image: https://apps.utu.fi/media/tiedotteet/syopasolu-tahmeat-sormet.png

Image: Dr Guillaume Jacquemet, University of Turku

Caption: High-resolution microscope image of an invasive breast cancer cell (magenta) expressing Myosin-10 induced "sticky-fingers" (green).

University of Turku

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.