More efficient risk assessment for nanomaterials

December 16, 2019

From dyes to construction materials, and from cosmetic products to electronics and medicine, nanomaterials are found in many different applications. But what are these materials? "Nanomaterials are defined purely by their size," explains Dr Kristin Schubert from the Department of Molecular Systems Biology at UFZ. "Materials between one and 100 nanometres in size are referred to as a nanomaterials." To help envisage their diminutive size: one nanometre is just one millionth of a millimetre. Since nanomaterials are so small, they can easily enter the body, for example through the lungs, skin or gastrointestinal tract, where they can cause adverse effects. Just like conventional chemicals, nanomaterials must therefore be tested for potential health risks before they can be industrially manufactured, used and marketed. Currently, testing is carried out for each nanomaterial individually. And since even the smallest changes - for example in size or surface characteristics - can affect toxicity, separate tests are also needed for each variant of a nanomaterial. "Risk assessment for nanomaterials is sometimes difficult and very time-consuming," says Dr Andrea Haase from BfR. "And the list of substances to be tested is getting longer every day, because nanotechnology is growing to become a key technology with wide-ranging applications. We therefore urgently need to find solutions for more efficient risk assessment."

How can nanomaterials be appropriately classified into groups? Are there similarities in their effects? And what material properties are associated with these effects? In their recent study, researchers at UFZ and BfR - together with industry representatives - set about answering these questions. "We focused on the biological effects and examined which molecules and signalling pathways in the cell are influenced by which types of nanomaterials," says Schubert. In in vitro experiments, the researchers exposed epithelial cells from rats' lungs to different nanomaterials and looked for changes within the cells. To do this, they used what are known as multi-omics methods: they identified several thousand cell proteins, various lipids and amino acids, and studied important signalling pathways within the cell. Using a novel bioinformatic analysis technique, they evaluated huge volumes of data and came to some interesting results.

"We were able to show that nanomaterials with toxic effects initially trigger oxidative stress and that in the process certain proteins are up- or down-regulated in the cell," explains Schubert. "In future, these key molecules could serve as biomarkers to detect and provide evidence of potential toxic effects of nanomaterials quickly and effectively." If the toxicity of the nanomaterial is high, oxidative stress increases, inflammatory processes develop and after a certain point the cell dies. "We now have a better understanding of how nanomaterials affect the cell," says Haase. "And with the help of biomarkers we can now also detect much lower toxic effects than previously possible." The researchers also identified clear links between certain properties of nanomaterials and changes in the cellular metabolism. "For example, we were able to show that nanomaterials with a large surface area affect the cell quite differently from those with a small surface area," says Schubert. Knowing which parameters play a key role in toxic effects is very useful. It means that nanomaterials can be optimised during the manufacturing process, for example through small modifications, and hence toxic effects reduced.

"Our study has taken us several large steps forward," says Schubert. "For the first time, we have extensively analysed the biological mechanisms underlying the toxic effects, classified nanomaterials into groups based on their biological effects and identified key biomarkers for novel test methods." Andrea Haase from BfR is more than satisfied: "The results are important for future work. They will contribute to new concepts for the efficient, reliable risk assessment of nanomaterials and set the direction in which we need to go."
-end-


Helmholtz Centre for Environmental Research - UFZ

Related Biomarkers Articles from Brightsurf:

Urgent need for blood-based biomarkers to diagnosis concussion
There is an urgent need for objective markers for diagnosing concussion, or mild traumatic brain injury.

Engineered bacteria churn out cancer biomarkers
A Cornell lab has created these very tools by commandeering simple, single-celled microorganisms - namely E. coli bacteria - and engineering them to explore the complex process of glycosylation and the functional role that protein-linked glycans play in health and disease.

Exercise induces secretion of biomarkers into sweat
The aim was to reveal the potential of microRNAs in sweat extracellular vesicles in monitoring exercise performance.

Phosphoprotein biomarkers to guide cancer therapy are identified
Researchers led by James Bibb, Ph.D., professor of surgery at the University of Alabama at Birmingham, suggest using a broader lens of post-translational modification analysis to identify new biomarkers of cancer drivers that may allow a much more precise prediction of patient responses to treatments.

Exhaled biomarkers can reveal lung disease
Using specialized nanoparticles, MIT engineers have developed a way to diagnose pneumonia or other lung diseases by analyzing the breath exhaled by the patient.

Race-specific lupus nephritis biomarkers
A University of Houston biomedical researcher has discovered a difference in urinary biomarker proteins of lupus nephritis in patients according to race.

Semen miRNAs could be non-invasive biomarkers for prostate cancer
Researchers of the Human Molecular Genetics group at the Bellvitge Biomedical Research Institute (IDIBELL), led by Dr.

Scientists have found longevity biomarkers
An international group of scientists studied the effects of 17 different lifespan-extending interventions on gene activity in mice and discovered genetic biomarkers of longevity.

After concussion, biomarkers in the blood may help predict recovery time
A study of high school and college football players suggests that biomarkers in the blood may have potential use in identifying which players are more likely to need a longer recovery time after concussion, according to a study published in the July 3, 2019, online issue of Neurology, the medical journal of the American Academy of Neurology.

3D-printed device detects biomarkers of preterm birth
Preterm birth (PTB) -- defined as birth before the 37th week of gestation -- is the leading complication of pregnancy.

Read More: Biomarkers News and Biomarkers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.