A flaky option boosts organic solar cells

December 16, 2019

An inexpensive material, made from tungsten disulfide flakes just a few atoms thick, has helped to improve the performance of organic solar cells1. The discovery by KAUST researchers could be an important step toward bringing these photovoltaic cells into wider use for generating clean electricity.

Most solar cells use silicon to absorb light and convert its energy into electricity. But carbon-based semiconductor molecules, used in organic photovoltaics (OPVs), offer some distinct advantages over silicon. OPVs tend to be flexible, for example, which means they could be manufactured at a large scale using low-cost roll-to-roll printing. But the best OPVs convert about 16-17 percent of the light they capture into electrical power, well short of commercial silicon cells that exceed 20 percent.

Thomas D. Anthopoulos, and colleagues at the KAUST Solar Center, have estimated that OPVs could rival that performance if certain parts of the cell were improved2. When light hits the semiconductor, it frees electrons from the material and leaves positively charged holes. Electrons and holes are gathered up by different layers on opposite faces of the semiconductor and delivered to the cell's electrodes to generate a current. The leading hole transporter is a polymer called PEDOT:PSS, but it is acidic and absorbs moisture from the air, which degrades other materials in the solar cell.

Anthopoulos's interdisciplinary team has now developed a hole-transporting layer made from flakes of a 2D material, tungsten disulfide. The researchers used ultrasound to tear the flakes off powdered tungsten disulfide suspended in a mixture of water and ethanol. This sonication method is inexpensive and easy to scale up, and the flakes can be spread onto an electrode using a simple and widely used spin-coating process.

The team fabricated several OPVs this way, and the best had a power conversion efficiency of 17 percent, which is the highest for any OPV using a 2D material as a hole transporter and among the highest for any OPV. "We were very surprised to reach 17 percent," says Yuanbao Lin, a Ph.D. student on the team. "We feel this is just the beginning and there is significant room for performance improvement."

The team found that the tungsten disulfide layer has a lower resistance than PEDOT:PSS and is also better at gathering holes than its rival, leading to improved performance. "Our immediate goal is to push the efficiency of our organic solar cells well beyond 17 percent and toward our theoretically predicted limits," says Anthopoulos. "We also aim to study the stability of these high-efficiency organic solar cells."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.