Characterising cold fusion in 2D models

December 16, 2020

Progress towards 'cold fusion,' where nuclear fusion can occur at close to room temperatures, has now been at a standstill for decades. However, an increasing number of studies are now proposing that the reaction could be triggered more easily through a mechanism involving muons - elementary particles with the same charge as electrons, but with around 200 times their mass. Through a study published in EPJ D, researchers led by Francisco Caruso at the Brazilian Centre for Physical Research have shown theoretically how this process would unfold within 2D systems, without any need for approximations.

The team's results could lead to long-awaited advances in the field of cold fusion - which has been proposed as an efficient, sustainable way to harvest vast amounts of energy. Since muons are so much heavier than electrons, they will orbit far closer to atomic nuclei when captured by hydrogen atoms. This enables the nuclei to fuse into helium far more readily - after which the muon is released from the system. However, since the amount of energy released is relatively small, it has remained challenging for theoretical physicists to propose a reliable basis for the technique, limiting its progress so far.

Caruso's team took a different approach in their study: this time, focusing on calculating the elementary processes involved in muon-catalysed fusion in 2D. The researchers then compared the behaviour of their model with 3D measurements, which revealed that the 2D process is influenced by significantly different parameters. Most strikingly, they showed that fusion is 1 billion times more likely to occur between a muonic pair of tritium atoms - a form of hydrogen containing two extra neutrons in its nucleus - than is the case for 3D. By directly calculating these probabilities, instead of estimating them, the team's findings could provide valuable insights for future studies of cold fusion.
-end-
Reference

F. Carusoa, A. Tropera, V. Ogurib, F. Silveira (2020) A bidimensional quasi-adiabatic model for muon-catalyzed fusion in muonic hydrogen molecules, European Physical Journal D 74:240, https://doi.org/10.1140/epjd/e2020-10479-6

Springer

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.