New diagnostic isotope to enhance targeted alpha therapy for cancer

December 16, 2020

LOS ALAMOS, N.M., Dec. 16, 2020-- Researchers in the DOE Isotope Program have developed an effective radionuclide, cerium-134, as a paired analogue of actinium and thorium that can be imaged using positron emission tomography (PET). Establishing a routine production pathway for cerium-134 is an essential step in advancing the use of the alpha emitters for cancer therapy.

"This advancement offers new possibilities for medical staff and drug developers to better characterize new actinium and thorium therapeutics," said Stosh Kozimor, lead Los Alamos National Laboratory researcher on the joint project with Lawrence Berkeley National Laboratory, the University of California, and the University of Wisconsin.

Targeted alpha therapies using actinium and thorium radionuclides are emerging as effective treatments for diseases such as cancer, with the potential to treat patients with little to no negative side-effects. But methods to image the radionuclides' location inside the body are needed to continue the development towards final safe and effective pharmaceuticals. The key to this research is that cerium-134 can be attached to the same chelate/ligand (transport agent which is attracted to diseased cells, e.g. tumors) as the actinium-225 and thorium-227, so that the therapeutic and the diagnostic behave the same. The cerium emits a positron that can be detected with PET and shows where the therapeutic is in the body, identifying its proximity to the diseased tissue in question.

"These promising alpha-emitting isotopes for targeted alpha therapy, actinium-225 and thorium-227, are incompatible with PET imaging, which is essential to studying their therapeutic effect in the body. We overcame this obstacle by developing large-scale production and purification methods for cerium-134, and demonstrating its efficacy in PET for imaging these alpha emitters," said Kozimor. "This demonstration is an important step toward making this isotope routinely available for clinical use." The cerium-134, as well as actinium-225 and thorium-229, are available from the DOE Isotope Program.
The paper: Bailey, T.A., Mocko, V., Shield, K.M. et al. Developing the 134Ce and 134La pair as companion positron emission tomography diagnostic isotopes for 225Ac and 227Th radiotherapeutics. Nat. Chem. (2020). DOI 10.1038/s41557-020-00598-7

The funding: U.S. Department of Energy (DOE) Isotope Program, managed by the Office of Science for Isotope R&D and Production. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the DOE, Office of Science. Additional support from a DOE Integrated University Program graduate research fellowship and a Nuclear Regulatory Commission Faculty Development Grant.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.


DOE/Los Alamos National Laboratory

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to