Do you compute?

December 17, 2001

Our brains excel at all kinds of things, but when neurobiologists and psychobiologists try to reverse engineer certain brain functions in order to produce a machine or system that might mimic some of the brain's extraordinary abilities, more often than not they fail (or at least engineer something that isn't half so elegant).

Now, researchers funded by Dr. Harold Hawkins (Program Officer in ONR's Cognitive and Neural Sciences Division) think they're on to something. By fusing engineering techniques with neurobiology, they've been able to model mammalian brain function using biologically realistic, highly detailed models of individual brain neurons and their assemblies. They are learning how the architecture and physiological properties of cells in the brain (the primary visual cortex) integrate visual cues for target recognition. In other words... how the brain computes.

"Right now we're building a cellular-level model of a small piece of visual cortex," says Dr. Leif Finkel, head of the University of Pennsylvania's Neuroengineering Research Lab. "It's a very detailed computer simulation which reflects with some accuracy at least the basic operations of real neurons." His colleague, Kwabena Boahen, is building VLSI computer chips that reproduce cortical wiring and many of the properties of the cells. "He has a chip that accurately models the retina and produces output spikes that closely match real retinae. We hope someday that these can be used as retinal implants."

"We've asked them to take a computational approach to neuroscience," says Hawkins. "They're looking at object-recognition systems that mimic the brain's ability to find patterns in highly cluttered visual scenes by integrating information derived from bottom-up, top-down and horizontal connections among neurons in the primary visual cortex. It's precisely what the Defense Department is interested in currently, and for obvious reasons... can we build systems that can instantly pick out an individual face in a crowd? Or parse a visual scene into its many parts? The goal is to use engineering analysis to discern the principles of neural function, and then to use these principles in the design of neuromorphic systems. Taken another step, we could use this same principle to exploit motion information for target tracking in noise and clutter."

Finkel's team works closely with physiologists, and there's a lot of going back and forth between the computer models and the real brains. "It's quite an exciting time in the field, with a real sense of progress -- Harold's been incredibly far-sighted about picking up on what's we're doing and applying it to what the Defense Department might find useful."

By making models of the visual cortex using brain recordings, by putting neural networks on computer chips, and by building mathematical models, these researchers are, in a sense, "reverse engineering" the brain...developing hardware and software systems that will have a similar ability to solve computationally difficult problems.

Precisely the stuff our real brains excel at without even thinking about it.
-end-


Office of Naval Research

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.