Yesterday, today and tomorrow: Mount Sinai researchers are making sense of episodic memory

December 17, 2003

Many of our actions are guided by past experiences combined with insight into the future. A major mystery of biology involves understanding how brain cells can create a representation that extends backward and forward through time. A new study conducted by researchers at Mount Sinai School of Medicine published in the December 18th issue of Neuron begins to unravel the brain activity that underlies concurrent processing of the recent past, the present and the imminent future.

Memories that are organized by time and context are known as episodic memory. Dr. Matthew L. Shapiro, Associate Professor of Neurobiology at Mount Sinai School of Medicine and leader of the study offers the following example. "Imagine driving to work, parking your car, and taking an elevator to your office. During the day you may take the elevator several times without thinking of your car. Only when the end of the day arrives and you descend in the elevator to go home do you remember where your car is parked. In the present moment in the elevator, the past guides your future action." To examine the brain processes involved in such episodic memories, Drs. Shapiro and Ferbinteanu examined cellular activity within the brain while rats searched for food in a maze where the starting and ending point was varied.

The researchers examined activity in the hippocampus, a brain region that is key for memory. The hippocampus contains cells, called place cells, which become more active in response to a particular spatial location. "We found that the activity of the place cells showed something very interesting while the rats performed the task. Some cells signaled location alone but others were additionally sensitive to recent or impending events," explains Dr. Ferbinteanu. "These cells maintained spatial selectivity, but this activity depended upon where the animal had just been or where it intended to go." Therefore, the hippocampus can support episodic memory by creating patterns of cellular activity for events within a temporal context.

"The pattern of cell firing suggests a model of how the hippocampus helps form episodic memories," suggests Dr. Shapiro. "When you park your car, hippocampal neurons fire in a pattern that includes location. When the time has come to go home, the goal in the elevator is to find the car. This goal activates cells in the hippocampus that did not fire during prior trips in the elevator that day, but form a new pattern that perhaps includes the visual and verbal images that guide recollection and future action." Further studies are needed to determine how the brain activates and decodes the signals that simultaneously integrate the past, present, and future.
-end-
MOUNT SINAI SCHOOL OF MEDICINE

Located in Manhattan, Mount Sinai School of Medicine is internationally recognized for ground-breaking clinical and basic-science research, and innovative approaches to medical education. Through the Mount Sinai Graduate School of Biological Sciences, Mount Sinai trains biomedical researchers with an emphasis on the rapid translation of discoveries of basic research into new techniques for fighting disease. One indication of Mount Sinai's leadership in scientific investigation is its receipt during fiscal year 2002 of $142.2 million, an increase of 16.7 percent from the previous year, and a jump of 80.5 percent since 1998. Mount Sinai now ranks 22nd among the nation's 125 medical schools in receipt of research support from NIH. Mount Sinai School of Medicine also is known for unique educational programs such as the Humanities in Medicine program, which creates opportunities for liberal arts students to pursue medical school, and instructional innovations like The Morchand Center, the nation's largest program teaching students and physicians with "standardized patients" to become not only highly skilled, but compassionate caregivers. Long dedicated to improving its community, the School extends its boundaries to work with the East Harlem community to pair physician/scientists and medical students with at risk high school students interested in careers in math and science.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.