Fleeting images of fearful faces reveal neurocircuitry of unconscious anxiety

December 17, 2004

Researchers at Columbia University Medical Center have found that fleeting images of fearful faces - images that appear and disappear so quickly that they escape conscious awareness - produce unconscious anxiety that can be detected in the brain with the latest neuroimaging machines.

It's one of the first times that neuroimaging has captured the brain's processing of unconscious emotion.

Using a high-resolution version of functional magnetic resonance imaging (fMRI) the researchers observed a structure in the brain important for emotional processing - the amygdala - lights up with activity when people unconsciously detected the fearful faces.

Although the study was conducted in people who had no anxiety disorders, the researchers says that the findings should also apply to people with anxiety disorders.

"Psychologists have suggested that people with anxiety disorders are very sensitive to subliminal threats and are picking up stimuli the rest of us do not perceive," says Dr. Joy Hirsch, professor of neuroradiology and psychology and director of the fMRI Research Center at Columbia University Medical Center, where the study was conducted. "Our findings now demonstrate a biological basis for that unconscious emotional vigilance."

Dr. Hirsch adds that the finding makes a profound prediction: "If a treatment for anxiety works, we should see the unconscious activity in the input end of the amygdala go down. In future studies, we want to use brain imaging to test the effectiveness of psychotherapeutic and pharmacological treatments for anxiety disorders."

The study was led by Drs. Hirsch; Eric Kandel, Senior Investigator at the Howard Hughes Institute, and Director of the Kavli Institute for Brain Science at Columbia University Medical Center; Rene Hen, professor of pharmacology; and graduate students Amit Etkin and Kristen Klemenhagen. Their research appears in the Dec. 16 issue of Neuron.

About the study

In the study, the researchers presented images of fearful facial expressions, which are powerful signals of danger in all cultures, to 17 different subjects. None of the 17 volunteers had any anxiety disorders, but their underlying anxiety varied from the 6th to the 85th percentile of undergraduate norms, as measured by a well-validated questionnaire.

"These are the type of normal differences that would be apparent if these people got stuck in an elevator," Dr. Hirsch says. "Some of them would go to sleep; some would climb the walls."

While the subjects were looking at a computer, the researchers displayed an image of a fearful face onto the monitor for 33 milliseconds, immediately followed by a similar neutral face. The fearful face appeared and disappeared so quickly that the subjects had no conscious awareness of it.

But the fMRI scans clearly revealed that the brain had registered the face and reacted, even though the subjects denied seeing it. These scans show that the unconsciously perceived face activates the input end of the amygdala, along with regions in the cortex that are involved with attention and vision.

Brain activity varies with level of anxiety

The researchers also noticed that the amount of brain activity varied from person to person, depending on their scores on the anxiety quiz.

The amygdalas of anxious people was far more active than the amygdalas of less anxious people. And anxious subjects showed more activity in the attention and vision regions of the cortex, which manifested itself in faster and more accurate answers when the subjects were asked questions about the neutral face.

"What we think we've identified is a circuit in the brain that's reponsible for enhancing the processing of unconsciously detected threats in anxious people," says Amit Etkin, the study's first author. "An anxious person devotes more attention and visual processing to analyze the threat. A less anxious person uses the circuit to a lesser degree because they don't perceive the face as much as a threat."

Unconscious vs. conscious processing of fearful faces

In contrast to unconscious processing of fearful faces, the researchers found that when subjects looked at the fearful faces for 200 milliseconds, long enough for conscious recognition, a completely different brain circuit was used to process the information. And the activity in that circuit did not vary according to the subject's level of anxiety.

"Our study shows that there's a very important role for unconscious emotions in anxiety," Etkin says.
-end-
Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, medical education, and health care. The medical center trains future leaders in health care and includes the dedicated work of many physicians, scientists, nurses, dentists, and other health professionals at the College of Physicians & Surgeons, the School of Dental & Oral Surgery, the School of Nursing, the Mailman School of Public Health, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. With a strong history of some of the most important advances and discoveries in health care, its researchers are leading the development of novel therapies and advances to address a wide range of health conditions

Columbia University Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.