Emory chemists reveal challenge to reaction theory

December 17, 2004

For nearly 75 years, transition-state theory has guided chemists in how they view the way chemical reactions proceed. Recent research by Emory University chemists is challenging the long-held theory, showing that in some cases chemical reactions can proceed via a path that completely bypasses the "transition state."

"Our understanding of chemical reactions rests on the notion of the transition state. If we think of reactions as occurring on an energy landscape, the transition state is the 'mountain pass' separating the reactants, and the resulting products from the reaction are valleys," says Joel Bowman, an Emory theoretical chemist and chairman of the chemistry department.

According to transition state theory, reactions proceed over this mountain pass, Bowman says, "but our results for a well-studied chemical reaction show that the reaction occurs during the transition state -- and also through a surprising second path that is not near this transition state region."

Bowman's research, done in collaboration with physical chemist Arthur Suits of Wayne State University in Detroit, was published in the Nov. 12 issue of the journal Science, and was highlighted in the Nov. 15 issue of Chemical and Engineering News.

Using high-powered computational work and detailed experimental studies, the scientists demonstrated that formaldehyde (H2CO) exposed to light rays (or photoexcited) can decompose to hydrogen and carbon monoxide via a path that skirts that reaction's well-established transition state entirely.

Using detailed pictures and measurements developed by Suits, Bowman performed high-level calculations to create a "movie" of this second pathway. The visual model reveals that one of formaldehyde's hydrogen atoms breaks off and roams around before bumping into the second hydrogen atom and forming a hydrogen molecule (H2). At no point in this second pathway does the reaction go through its transition state.

Formaldehyde decomposition has long been a model system for those studying transition-state theory because the reaction is simple enough to treat with high-level theoretical models, and the products are easily detectable. Bowman's research shows that such transition-state-skirting pathways may not be all that unusual in other chemical reactions.

"Although this discovery does not overturn traditional transition-state theory, our work is part of a growing body of evidence that is changing and expanding the way chemists and biochemists think about chemical reactions," Bowman says.
-end-
Emory University is known for its demanding academics, outstanding undergraduate college of arts and sciences, highly ranked professional schools and state-of-the-art research facilities. For more than a decade Emory has been named one of the country's top 25 national universities by U.S. News & World Report. In addition to its nine schools, the university encompasses The Carter Center, Yerkes National Primate Research Center and Emory Healthcare, a comprehensive metropolitan health care system.

Emory University Health Sciences Center

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.