Overexcited neurons not good for cell health

December 17, 2007

EVANSTON, Ill. --- Neurotransmitters have consequences. They initiate events that are critical to a healthy life, giving us the ability to move, to talk, to breathe, to think. But that's if the neurotransmitters are getting it right and sending proper signals downstream to muscle cells, neurons or other cells.

Now a Northwestern University study reports that a mutation in a transcription factor that controls a neurotransmitter in the nematode C. elegans causes an imbalance in neuronal signaling that results in protein damage in target cells. Similar results and consequences on protein folding were found to occur upon exposure to the common toxins nicotine and lindane (a pesticide).

Whether due to genetic mutation or exposure to small molecules, the neurons become overexcited and fire incorrect signals too rapidly, resulting in proteins in target muscle cells becoming stressed, misfolding and becoming non-functional.

"To find that small molecules reproduce our genetic observations -- that both environment and genetics cause a molecular defect in the ability of proteins to function in muscle cells -- was not expected," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern's Weinberg College of Arts and Sciences, who led the research team.

This study provides some of the strongest evidence that nerve cell activity can directly affect the protein folding process in another cell. (Muscle cells in the case of this study.) Many different diseases and conditions, such as many neurodegenerative diseases, certain cancers, muscular dystrophy and the aging process, cause loss of muscle cell function. How that happens is not well understood.

"We may have discovered an unexpected basis for a number of human diseases," said Morimoto. "Particularly interesting is the link with the environment. We've shown that pesticides, which are widespread and have been linked to an increase in Parkinson's disease and other neurodegenerative diseases among farmers, have profound effects on nerve communication -- even more than we expected."

"Neuronal Signaling Modulates Protein Homeostasis in Caenorhabditis Elegans Post-synaptic Muscle Cells" is published by the journal Genes & Development. In addition to Morimoto, the study's co-investigators include lead author Susana M. Garcia, a former graduate student of Morimoto's and now a postdoctoral fellow at Harvard University; M. Olivia Casanueva, a postdoctoral fellow, and M. Catarina Silva, a visiting predoctoral student, both at Northwestern; and Margarida D. Amaral, University of Lisbon, Portugal.

Morimoto and his team studied presynaptic neurons and postsynaptic muscle cells in C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known.

Specifically, the researchers looked at what happened to polyglutamine proteins in muscle cells that were at the tipping point: the proteins were at risk of soon aggregating and losing their function. The scientists wanted to see if they could cause the protein, which is associated with Huntington's disease, to show its toxicity prematurely. (If misfolded or damaged proteins accumulate beyond a certain critical point, they aggregate and disease can result. )

In separate experiments, the researchers induced two genetic mutations in presynaptic neurons, one that caused the reduction of the neurotransmitter GABA, which inhibits neuronal firing, and one that increases the action of a neurotransmitter called acetylcholine, which stimulates neuronal firing. The result of both mutations was overexcited neurons that disrupted the way the neurons sent signals to the muscle cells and caused protein aggregation.

The effects were similar when the researchers introduced both nicotine (a neurostimulant) and lindane (an inhibitor of GABA, causing overstimulated neurons) to neurons with no mutations.

"Neurons integrate information and transfer this information to surrounding cells, influencing protein homeostasis," said Morimoto, an expert on Huntington's disease, amyotrophic lateral sclerosis (ALS) and the cellular and molecular response to damaged proteins. "When a neuron's electrochemistry is imbalanced every cell downstream is imbalanced. We've revealed that it's an integrated communications network that determines protein folding."

While Morimoto and his team focused only on postsynaptic muscle cells in this study, they plan to look at other cells and how neuronal signaling affects their function.
-end-


Northwestern University

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.