Primary cilium as cellular 'GPS system' crucial to wound repair

December 17, 2008

The primary cilium, the solitary, antenna-like structure that studs the outer surfaces of virtually all human cells, orient cells to move in the right direction and at the speed needed to heal wounds, much like a Global Positioning System helps ships navigate to their destinations.

"What we are dealing with is a physiological analogy to the GPS system with a coupled autopilot that coordinates air traffic or tankers on open sea," says Soren T. Christensen, describing his recent research findings on the primary cilium, the GPS-like cell structure, at the American Society for Cell Biology (ASCB) 48th Annual Meeting, Dec. 13-17, 2008 in San Francisco.

Christensen and his colleagues at the University of Copenhagen in Denmark and the Albert Einstein School of Medicine in the Bronx studied the primary cilia in lab cultures of mice fibroblasts, the cells that along with related connective tissues sculpt the bulk of the mammalian body.

They discovered that these cilia are oriented to detect a growth factor critical to the efficient repair of wounds. When properly stimulated by the protein factor, the primary cilia steered fibroblast cells toward the wound. If the primary cilia were genetically engineered to be defective, wound repair did not occur as quickly. In addition, the closure of wounds was incomplete in the mice with defective cilia, compared to rodents with normal cilia.

"The really important discovery is that the primary cilium detects signals, which tell the cells to engage their compass reading and move in the right direction to close the wound," Christensen explains.

"In mutant cells that lack the primary cilium," Christensen says, "cell migration is unregulated with uncontrolled directional cell displacement during wound closure, leaving the cells blindfolded to some of the signals that permit the cells to navigate correctly."

The protein signal that activates the primary cilia is the platelet-derived growth factor (PDGF-AA), the ligand for platelet-derived growth factor (PDGFR alpha). The scientists found that when the primary cilia contain unique receptors for PDGFR alpha and that when turned on by the ligand, the receptors transmitted information from the cilia to the cell that resulted in the reorganization of the cellular cytoskeleton. The reorganization signaled the cells to move in the right direction and pace. This process did not occur in mutant cells with no primary cilia.

The researchers suspect this cellular GPS system plays roles other than wound healing. The primary cilia could serve as a fail-safe device against uncontrolled cell movement, says Christensen. Without chemical stimulation, the primary cilia would restrain cell migration, preventing the dangerous displacement of cells that is associated with invasive cancers and fibrosis, the scientists explain. On the other hand, defective primary cilia might fail to provide correct directional instructions during cell differentiation. This failure could be another link connecting primary cilia to severe developmental disorders, the researchers suggest.

Protruding through the cell membrane, primary cilia occur on almost every non-dividing cell in the body. Once written off as a vestigial organelle discarded in the evolutionary dust, primary cilia in the last decade have risen to prominence as a vital cellular sensor at the root of a wide range of health disorders, from polycystic kidney disease to cancer to left-right anatomical abnormalities.
-end-
For more information: Contact John Fleischman, ASCB science writer, jfleischman@ascb.org, (513) 929-4635, (513) 706-0212, or Cathy Yarbrough, ASCB annual meeting media manager, cyarbrough@ascb.org, (858) 243-1814.

or

Soren Tvorup Christensen
University of Copenhagen
Copenhagen, Denmark
011 45 35 32 17 05
stchristensen@bio.ku.dk

Peter Satir
Albert Einstein College of Medicine
1300 Morris Park Ave
Bronx, NY 10461-1975
(718) 430-4061
satir@aecom.yu.edu

Author presents the paper, Poster B262, titled, "The primary cilium coordinates directional cell migration," on:1:30 pm, Wednesday, Dec. 17, 2008, in session 2553, Cilia and Flagella IV, in Halls A-C, Moscone Center.

Authors: L. Schneider, S. Nielsen, I. Veland, S.T. Christensen, Department of Biology, University of Copenhagen, Copenhagen, Denmark; M. Cammer, Analytical Imaging Facility and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY; J. Lehman, B.K. Yoder, Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL; P. Satir, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY; C. Stock, A. Schwab, Institute of Physiology II, Munster University, Munster, Germany

American Society for Cell Biology

Related Cell Biology Articles from Brightsurf:

Deep learning on cell signaling networks establishes AI for single-cell biology
Researchers at CeMM have developed knowledge-primed neural networks (KPNNs), a new method that combines the power of deep learning with the interpretability of biological network models.

RNA biology provides the key to cell identity and health
Two papers in Genome Research by the FANTOM Consortium have provided new insights into the core regulatory networks governing cell types in different vertebrate species, and the role of RNA as regulators of cell function and identity.

Cell biology: Your number's up!
mRNAs program the synthesis of proteins in cells, and their functional lifetimes are dynamically regulated.

Cell biology -- maintaining mitochondrial resilience
Mitochondria cannot autonomously cope with stress and must instead call on the cell for help.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.

Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.

In a first for cell biology, scientists observe ribosome assembly in real time
A team of scientists from Scripps Research and Stanford University has recorded in real time a key step in the assembly of ribosomes -- the complex and evolutionarily ancient 'molecular machines' that make proteins in cells and are essential for all life forms.

Cell biology: Endocannabinoid system may be involved in human testis physiology
The endocannabinoid system (ECS) may be directly involved in the regulation of the physiology of the human testis, including the development of sperm cells, according to a study in tissue samples from 15 patients published in Scientific Reports.

Read More: Cell Biology News and Cell Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.