High blood sugar's impact on immune system holds clues to improving islet cell transplants

December 17, 2008

AUGUSTA, Ga. - A biological tit for tat may hold clues to improving the success of islet cell transplants intended to cure type 1 diabetes, according to a Medical College of Georgia scientist.

In type 1, the immune system attacks insulin-producing cells causing high blood glucose levels that may temporarily reduce the attack, said Dr. Rafal Pacholczyk, an immunologist in the MCG Center for Biotechnology and Genomic Medicine.

He just received a three-year, $495,000 grant from Juvenile Diabetes Research Foundation to find out whether this counteraction offers insight for transplants.

High blood glucose, or hyperglycemia, causes all sorts of dysregulation throughout the body. "It throws off metabolism, hormonal interplay and increases the risk of severe infections," Dr. Pacholczyk said. A shot of insulin or an islet cell transplant normalizes blood glucose levels, enabling, among other things, restoration of the usual balance between effector T cells which mount an immune or autoimmune response and regulatory T cells which suppress attacks.

He's obviously not saying hyperglycemia is good; in fact if diabetics were to get a transplant while their blood glucose was high the procedure alone could be lethal. But Dr. Pacholczyk hypothesizes it causes a temporary shift in the immune playing field that gives advantage to regulatory T-cells long enough for the body to accept the transplanted cells. One reason may be that suppressive regulatory cells recover differently or are less influenced by hyperglycemia.

Researchers at Canada's University of Alberta were the ones to find high blood glucose causes a short-lived suppression of the attack mode of the immune system followed by a slow return of homeostasis. The result: Islet cell transplants done in mice immediately after a blood glucose spike were dramatically more successful than those done days later, according to the research published in 2007 in the Scandinavian Journal of Immunology. In fact, the early recipients did not require immunosuppression, which transplants patients receive to reduce the risk that their new insulin-producing cells also will become targets for their immune system. However, this generalized immune suppression puts patients at increased risk for infections, cancer and other diseases. "Basically, your guard is down," Dr. Pacholczyk said.

Seventy percent of mice that got transplants two days after they became hyperglycemic did not need immunosuppression, the Canadian researchers found; after nine days, the acceptance rate was reduced to about 10 percent. "The question is why?" Dr. Pacholczyk said.

Typically the path isn't easy for transplanted cells. Many die from the stress of transplantation or immune system attack either because they are rejected as invaders or because the same autoreactive mechanism that led to destruction of the patient's own cells is resurrected. "Cells that survive are the ones being counted on. Over time, they should increase in mass to a level that should produce sufficient amounts of insulin," the researcher said.

Type 1 diabetes results from the wrong mix of genes and environmental triggers. For example, early exposure of a genetically predisposed child to cow's milk and a viral infection could trigger an immune response to bovine insulin which, in turn, leads to islet cell destruction.

The researcher's animal model reflects the human condition fairly well; it's inbred to have diabetes but Dr. Pacholczyk developed a system to chemically induce the disease when he wants so he'll know exactly when islet cells are destroyed by the immune system. He'll document hyperglycemia's impact on all immune cells with the long term goals of identifying the magic that enables acceptance of islet cells and finding a safer, more direct way to replicate it.

In 2007, he and colleague Dr. Leszek Ignatowicz caused a stir in the scientific community when they found that regulatory T cells, which always suppress the immune response, can recognize invaders as well as body tissue. That means they could technically keep the immune system from attacking a foreign substance, such as transplanted islet cell. But researchers cautioned then that manipulating T-cell levels to treat autoimmune diseases, such as type 1 diabetes and lupus, must be done cautiously and selectively to ensure patients are not put at the same risk as those on traditional immunosuppressive therapy.
-end-


Medical College of Georgia at Augusta University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.