Major breakthrough may pave the way for therapeutic vaccines

December 17, 2009

It should be possible to use therapeutic vaccines to create both cheap and effective drugs for diseases like cancer and allergies. One problem in developing such vaccines has previously been the lack of adjuvants, substances that make vaccines more effective. However, there has now been a major breakthrough in this area. The study, led by scientists at Uppsala University, is published in the December issue of the journal Vaccine.

Many of the treatment methods that are developed today for allergies, cancer, and autoimmune diseases are based on the use of so-called monoclonal antibodies. The cost of these protein pharmaceuticals is high, between 15 000 and 150 000 dollars per patient and year, and long periods of treatment are often needed. Therapeutic vaccines contain no pre-produced antibodies but rather stimulate our immune system to produce its own therapeutic antibodies. They are considerably less expensive to manufacture than the drugs that are now being produced.

"Therapeutic vaccines that target the same molecules in the body as the various monoclonal antibodies would enable us to reduce the cost of treatment significantly, and also decrease the number of visits patients need to make to the clinic," says Lars Hellman, professor of molecular and comparative immunology at the Department of Cell and Molecular Biology, Uppsala University, who directed the study.

One of the biggest problems when it comes to developing therapeutic vaccines has been the lack of so-called adjuvants, immune-stimulating substances that are added to boost the effect of the vaccine. Until now, there has been only one adjuvant that is approved for use in humans, and this substance has proven to have little or no effect when the target molecule is endogenous, that is, produced by the body itself. To develop new and more potent adjuvants, researchers from Uppsala University, in collaboration with colleagues from the Shemyakin-Ovchinnikov Institute in Moscow, have performed comprehensive analyses of various potential combinations.

"We have made a very important breakthrough by managing to identify a substance that is biologically degradable and that exhibits considerably higher activity than the adjuvants that have been used in the past," says Lars Hellman.

"These new and highly promising findings are an important step toward developing more cost-effective drugs for some of our major public health diseases," he says.
-end-


Uppsala University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.