Pores finding reveals targets for cancer and degenerative disease

December 17, 2009

Walter and Eliza Hall Institute scientists have identified a key step in the biological process of programmed cell death, also called apoptosis.

Apoptosis is important in human biology as it removes unwanted and sometimes dangerous cells from our bodies, protecting us against cancer development. It can also, however, lead to the development of degenerative diseases when healthy cells are errantly destroyed.

The research, led by Dr Ruth Kluck from the institute's Molecular Genetics of Cancer Division, is crucial to the development of drugs that can turn on apoptosis, thereby more effectively killing cancer cells. It could also be used in developing compounds that turn off the apoptosis that leads to degenerative disorders.

Dr Kluck has been investigating the role in apoptosis of two proteins, Bak and Bax. It is thought that understanding their role will identify targets against which drugs to regulate cell death could be designed.

"The pivotal step towards cell death is the formation of a pore in the mitochondria; mitochondria make and supply energy to the cells," Dr Kluck said. "Pore formation is the point of no return in apoptotic cell death as it allows cytochrome c, which is the protein that initiates cell death, to escape from the mitochondria. Only two proteins are known to form the pore, Bak and Bax."

In 2008 Dr Kluck and her colleagues published their finding that, in order to form the pore, Bak first changes shape and then combines with another Bak protein to form a doublet.

"We have now identified the second step in how Bak forms that pore," Dr Kluck said. "Once the doublet is formed it can combine with other Bak doublets by what's called a second interface. This second interface seems to allow doublets to assemble into the larger complexes that form the pore."

The team of Dr Kluck, Dr Grant Dewson, Mr Tobias Kratina, Dr Peter Czabotar and Professor Jerry Adams from the institute and Dr Catherine Day from the University of Otago published their finding in the 25 November issue of Molecular Cell.

Dr Kluck said the team would continue to study how the large complexes of Bak and Bax force a hole in the mitochondrial membrane, how to start this process more effectively in cancer cells, and how to prevent it in brain and other healthy cells.

"A major black box in understanding apoptosis is how Bak and Bax work. Because these proteins change shape and lodge in a membrane they are hard to study. Any understanding we gain about how Bak and Bax form a pore, how they change shape and how they bind to each other, will help us understand how cancer cells can be targeted to die."
-end-
The research was funded by the Cancer Council Victoria, the National Health and Medical Research Council and the Australian Research Council.

For further information contact Penny Fannin, Strategic Communications Manager, on +61 3 9345 2345, 0417 125 700 or fannin@wehi.edu.au.

Walter and Eliza Hall Institute

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.