Dust-plumes power intercontinental microbial migrations

December 17, 2012

Along with pollutants from Asia, transpacific dust plumes deliver vast quantities of microbes to North America, according to a manuscript published online ahead of print in the journal Applied and Environmental Microbiology.

"We detected thousands of unique microbial species, many of which seem particularly well-suited for atmospheric transport," says first author David J. Smith, a graduate student at the University of Washington, Seattle. "We also detected archaea, a domain of life that has never before been sampled at high altitude. We are just starting to understand the consequences of long-range microbial transport."

"Over 70 million tons of Asian aerosols--mostly dust--reach our continent every year," says Smith. "There could be thousands of microbes per gram of dust. Do the math. The number is staggering. Distant continents are essentially sneezing on each other."

Although the research is basic, Smith foresees value in understanding how bacteria survive at high altitudes during intercontinental journeys. For example, identifying the mechanisms for resisting ultraviolet radiation at altitude, which likely involve protecting and repairing DNA, could prove invaluable to biotechnology and medicine, says Smith. "It is difficult to predict specific breakthroughs and applications, but studying microbes in extreme environments has had practical benefit before," he says, mentioning discovery of a thermostable enzyme from microbes in the hot springs of Yellowstone National Park, which proved invaluable to Polymerase Chain Reaction. Additionally, developing predictive models of disease dispersal via the tradewinds "could be of tremendous value to farmers," says Smith.

The research took place at an observatory perched on the summit of a volcano in the Pacific Northwest, says Smith. "We could process huge volumes of air, 24/7, and capture enough biomass to analyze airborne microorganisms using molecular methods." Two major pollution events emanating from Asia during the sampling season of 2011 helped the team distinguish Asian expatriate microbes from locals, along with chemical and meteorological methods, says Smith.

The research was physically challenging. "Mt. Bachelor is a very snowy place and one of the windiest mountains in North America," says Smith. "Some summit days were an endurance marathon. Wearing latex gloves when it's 20 degrees below zero is not fun. But it was a worthwhile sacrifice for science, and I would happily do it again."

Conducting the research also changed how Smith views the sky. "Now when I look at the clouds, I see microbial sanctuaries," he says.
-end-
A PDF of the manuscript can be found online at http://bit.ly/asmtip1212a. Formal publication is scheduled for the February 2013 issue of Applied and Environmental Microbiology.

(D.J. Smith, H.J. Timonen, D.A. Jaffe, D.W. Griffin, M.N. Birmele, K.D. Perry, P.D. Ward, M.S. Robert, 2012. Intercontinental dispersal of bacteria and archaea in transpacific winds. Appl. Environ. Microbiol. (E-pub ahead of print 7 Dec. 2012).

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

American Society for Microbiology

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.