Nanofibers clean sulfur from fuel

December 17, 2012

CHAMPAIGN, Ill. -- Sulfur compounds in petroleum fuels have met their nano-structured match.

University of Illinois researchers developed mats of metal oxide nanofibers that scrub sulfur from petroleum-based fuels much more effectively than traditional materials. Such efficiency could lower costs and improve performance for fuel-based catalysis, advanced energy applications and toxic gas removal.

Co-led by Mark Shannon, a professor of mechanical science and engineering at the U. of I. until his death this fall, and chemistry professor Prashant Jain, the researchers demonstrated their material in the journal Nature Nanotechnology.

Sulfur compounds in fuels cause problems on two fronts: They release toxic gases during combustion, and they damage metals and catalysts in engines and fuel cells. They usually are removed using a liquid treatment that adsorbs the sulfur from the fuel, but the process is cumbersome and requires that the fuel be cooled and reheated, making the fuel less energy efficient.

To solve these problems, researchers have turned to solid metal oxide adsorbents, but those have their own sets of challenges. While they work at high temperatures, eliminating the need to cool and re-heat the fuel, their performance is limited by stability issues. They lose their activity after only a few cycles of use.

Previous studies found that sulfur adsorption works best at the surface of solid metal oxides, so graduate student Mayank Behl, from Jain's group, and Junghoon Yeom, then a postdoctoral researcher in Shannon's group, set out to create a material with maximum surface area. The solution: tiny grains of zinc titanate spun into nanofibers, uniting high surface area, high reactivity and structural integrity in a high-performance sulfur adsorbent.

The nanofiber material is more reactive than the same material in bulk form, enabling complete sulfur removal with less material, allowing for a smaller reactor. The material stays stable and active after several cycles. Furthermore, the fibrous structure grants the material immunity from the problem of sintering, or clumping, that plagues other nano-structured catalysts.

"Our nanostructured fibers do not sinter," Jain said. "The fibrous structure accommodates any thermophysical changes without resulting in any degradation of the material. In fact, under operating conditions, nanobranches grow from the parent fibers, enhancing the surface area during operation."

Jain's group will continue to investigate the enhanced properties of nanofiber structures, hoping to gain an atomic-level understanding of what makes the material so effective.

"We are interested in finding out the atomic sites on the surface of the material where the hydrogen sulfide adsorbs," said Jain, who is also affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I. "If we can know the identity of these sites, we could engineer an even more efficient adsorbent material. The atomic or nanoscale insight we gain from this material system could be useful to design other catalysts in renewable energy and toxic gas removal applications."
-end-
This work was supported by the National Science Foundation, the department of chemistry and the Frederick Seitz Materials Research Laboratory at the U. of I.

Editor's note: To contact Prashant Jain, call 217-333-3417; email jain@illinois.edu.

The paper, "A regenerable oxide-based H2S adsorbent with nanofibrous morphology," is available online at http://www.nature.com/nnano/journal/v7/n12/full/nnano.2012.194.html.

University of Illinois at Urbana-Champaign

Related Sulfur Articles from Brightsurf:

New sulfur dioxide conversion method may transform current industrial techniques
A single-step, plasma-enhanced catalytic process to convert sulfur dioxide to pure sulfur from tail gas streams may provide a promising, more environmentally-friendly alternative to current multistage thermal, catalytic and absorptive processes, according to scientists at Penn State.

A protein with an unprecedented fold helps bacteria uptake thiosulfate as a sulfur source
L-Cysteine is an important amino acid for our proteins and also widely used in food, cosmetic and pharmaceutical industries.

Cyclohexyl phenyl sulfide cleavage studied for degradation of sulfur-containing heavy oil
So far, the KFU team has proven copper compounds are the most effective in producing catalysts for heavy oil extraction.

Liquid sulfur changes shape and goes critic under pressure
Scientists from the ESRF, together with teams from CEA and CNRS/Sorbonne Université, have found the proof for a liquid-to-liquid transition in sulfur and of a new kind of critical point ending this transition.

Agriculture replaces fossil fuels as largest human source of sulfur to the environment
Historically, coal-fired power plants were the largest source of reactive sulfur, a component of acid rain, to the biosphere.

Agriculture replaces fossil fuels as largest human source of sulfur in the environment
New research identifies fertilizer and pesticide applications to croplands as the largest source of sulfur in the environment -- up to 10 times higher than the peak sulfur load seen in the second half of the 20th century, during the days of acid rain.

Sulfur-containing polymer generates high refractive index and transparency?
Researchers reported a novel technology enhancing the high transparency of refractive polymer film via a one-step vapor deposition process.

Un-natural mRNAs modified with sulfur atoms boost efficient protein synthesis
A group of Japanese scientists has succeeded in the development of modified messenger RNAs (mRNAs) that contain sulfur atoms in the place of oxygen atoms of phosphate moieties of natural mRNAs.

Review of progress towards advanced Lithium-sulfur batteries
How should one design porous carbon materials for advanced Li-S batteries cathodes?

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Read More: Sulfur News and Sulfur Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.