Research progress on photochemical transformation of organic sunscreens in natural waters

December 17, 2013

Organic sunscreens released from sea-bathing or wastewater discharges are emerging pollutants frequently detected in natural waters, and draw extensive concerns due to potential ecological risks. Photochemical transformation of organic sunscreens in surface waters may influence their environmental fate and ecological risk. The latest researches on the photochemical behavior of organic sunscreens were summarized in a paper entitled.

"Aquatic environmental photochemical behavior of organic sunscreens" (Chinese Science Bulletin 2013, Vol 58(30), 2989), wrote by Dr. Siyu Zhang from the research group of Professor Jingwen Chen at the Dalian University of Technology, China.

As excellent sunlight absorbers, organic sunscreens potentially undergo photochemical transformation directly by absorbing ultraviolet emission of sunlight. Natural water constituents may influence the photochemical behavior. This paper summarized the photochemical behavior of organic sunscreens reported so far, including photolytic rates, effects of water constituents, products and toxicity. They found that photolysis half-lives of different organic sunscreens range from several hours to a month, related to molecular structures, seasons, latitude, properties of waters. Dissolved oxygen, pH, dissolved organic matters (DOM), chloride, nitrate, carbonate/bicarbonate, and metal ions may influence photochemical transformation rate or products of organic sunscreens, with the effects varied with properties of organic sunscreens. The photochemical transformation of some organic sunscreens may lead to formation of toxic products, e.g. reactive oxygen species, endocrine disruptors, cytotoxic substances. Chen's group has worked on environmental photochemical behavior of organic pollutants for over ten years. Besides organic sunscreens, they found that photochemical transformation of other emerging pollutants also varies significantly with molecular structures and water constituents. In one of their articles, progress in studies on aqueous environmental photochemical behavior of antibiotics was summarized (SCIENTIA SINICA Chimica, 2010, 40(2), 124).

"Photochemical transformation is important in determining the fate of organic pollutants in the environment, and there are many pollutants for which the photochemical behavior is not well understood, so we attempted to develop methods to predict environmental photochemical behavior of pollutants" said Dr. Chen.

They employed quantum chemical calculations based on density functional theory (DFT) or time-dependent DFT (TD-DFT), and quantitative structure-activity relationship (QSAR) to explore the dependence of environmental photochemical behavior on molecular structures and water constituents. In their recent works, the environmental photochemical transformation for several kinds of emerging pollutants was investigated, including sunscreens, antibiotics, and polybrominated diphenyl ethers. The pH-dependent photolytic mechanisms of ciprofloxacin (ES&T 2013, 47, 4284), hydroxyl radical induced photooxidation mechanisms and kinetics of BDE-15 (ES&T, 2011, 45, 4839) were elucidated. A DFT approach for evaluating effects of dissolved oxygen, DOM and Cl- on photochemical behavior of emerging pollutants was developed (ES&T, 2010, 44, 7484).
-end-
Corresponding author:

CHEN Jingwen
jwchen@dlut.edu.cn

See the article: Zhang S Y, Yang X H, Chen J W, et al. Aquatic environmental photochemical behavior of organic sunscreens. Chin Sci Bull, 2013, 58(30): 2989.

http://csb.scichina.com:8080/kxtb/EN/abstract/abstract511900.shtml

Science China Press

Related Pollutants Articles from Brightsurf:

Reduction of environmental pollutants for prevention of cardiovascular disease
A group of international scientists summarized the epidemiologic and mechanistic evidence in support of an association between noise and air pollution with cardiovascular and metabolic disease, and recommended comprehensive mitigation measures.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Cell death in porpoises caused by environmental pollutants
Environmental pollutants threaten the health of marine mammals. This study established a novel cell-based assay using the fibroblasts of a finless porpoise stranded along the coast of the Seto Inland Sea, Japan, to better understand the cytotoxicity and the impacts of environmental pollutants on the porpoise population.

Using electricity to break down pollutants left over after wastewater treatment
Pesticides, pharmaceutical products, and endocrine disruptors are some of the emerging contaminants often found in treated domestic wastewater, even after secondary treatment.

New catalysts remove NOx pollutants at lower temperatures
Scientists from Tokyo Metropolitan University have developed a low-temperature catalyst for removing NOx gas from industrial exhaust using ammonia.

Cleaning with bleach could create indoor air pollutants
For generations, people have used chlorine bleach to clean and disinfect their homes.

Fatty fish without environmental pollutants protect against type 2 diabetes
If the fatty fish we eat were free of environmental pollutants, it would reduce our risk of developing type 2 diabetes.

Environmental pollutants could impact cellular signs of aging
Researchers have linked some environmental pollutants with diseases, a decreased life span and signs of premature aging, such as wrinkles and age spots.

Catalyst advance removes pollutants at low temperatures
Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert pollutants at near room temperature -- an important advance for reducing pollution in modern cars.

Pollutants, pathogens could team up to make us sick
Many people view pollutants and pathogens as separate causes of illness.

Read More: Pollutants News and Pollutants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.